scholarly journals Cell type-specific roles of PAR1 in Coxsackievirus B3 infection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael F. Bode ◽  
Clare M. Schmedes ◽  
Grant J. Egnatz ◽  
Vanthana Bharathi ◽  
Yohei M. Hisada ◽  
...  

AbstractProtease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.

2007 ◽  
Vol 81 (24) ◽  
pp. 13668-13680 ◽  
Author(s):  
Jennifer Zurney ◽  
Kristina E. Howard ◽  
Barbara Sherry

ABSTRACT Viral myocarditis is an important human disease, and reovirus-induced murine myocarditis provides an excellent model system for study. Cardiac myocytes, like neurons in the central nervous system, are not replenished, yet there is no cardiac protective equivalent to the blood-brain barrier. Thus, cardiac myocytes may have evolved a unique antiviral response relative to readily replenished cell types, such as cardiac fibroblasts. Our previous comparisons of these two cell types revealed a conundrum: reovirus T3D induces more beta-interferon (IFN-β) mRNA in cardiac myocytes, yet there is a greater induction of IFN-stimulated genes (ISGs) in cardiac fibroblasts. Here, we investigated possible underlying molecular determinants. We found that greater basal expression of IFN-β in cardiac myocytes results in greater basal activated nuclear STAT1 and STAT2 and greater basal ISG mRNA expression and provides greater basal antiviral protection relative to cardiac fibroblasts. Conversely, cardiac fibroblasts express greater basal IFN-α/β receptor 1 (IFNAR1) and greater basal cytoplasmic Jak1, Tyk2, STAT2, and IRF9, leading to a greater increase in reovirus T3D- or IFN-induced nuclear activated STAT1 and STAT2 and greater induction of ISGs for a greater IFN-induced antiviral protection relative to cardiac myocytes. Our results suggest that high basal IFN-β expression in cardiac myocytes prearms this vulnerable, nonreplenishable cell type, while high basal expression of IFNAR1 and latent Jak-STAT components in adjacent cardiac fibroblasts renders these cells more responsive to IFN and prevents them from inadvertently serving as a reservoir for viral replication and spread to cardiac myocytes. These studies provide the first indication of an integrated network of cell-type-specific innate immune components for organ protection.


Diabetologia ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 1938-1947 ◽  
Author(s):  
Francesca Semplici ◽  
Angeles Mondragon ◽  
Benedict Macintyre ◽  
Katja Madeyski-Bengston ◽  
Anette Persson-Kry ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Beibei Dai ◽  
Feng Wang ◽  
Xiang Nie ◽  
Hengzhi Du ◽  
Yanru Zhao ◽  
...  

Cardiovascular diseases are one of the prime reasons for disability and death worldwide. Diseases and conditions, such as hypoxia, pressure overload, infection, and hyperglycemia, might initiate cardiac remodeling and dysfunction by inducing hypertrophy or apoptosis in cardiomyocytes and by promoting proliferation in cardiac fibroblasts. In the vascular system, injuries decrease the endothelial nitric oxide levels and affect the phenotype of vascular smooth muscle cells. Understanding the underlying mechanisms will be helpful for the development of a precise therapeutic approach. Various microRNAs are involved in mediating multiple pathological and physiological processes in the heart. A cardiac enriched microRNA, miR-21, which is essential for cardiac homeostasis, has been demonstrated to act as a cell–cell messenger with diverse functions. This review describes the cell type–specific functions of miR-21 in different cardiovascular diseases and its prospects in clinical therapy.


2019 ◽  
Vol 18 (1) ◽  
pp. 91-103
Author(s):  
Alexander A. Boucher ◽  
Leah Rosenfeldt ◽  
Duaa Mureb ◽  
Jessica Shafer ◽  
Bal Krishan Sharma ◽  
...  

1998 ◽  
Vol 4 (3) ◽  
pp. 78
Author(s):  
Koji Hasegawa ◽  
Eri Iwai-Kanai ◽  
Makoto Araki ◽  
Tatsuya Morimoto ◽  
Tsuyoshi Kakita ◽  
...  

2021 ◽  
Author(s):  
Price Obot ◽  
Libor Velíšek ◽  
Jana Velíšková ◽  
Eliana Scemes

AbstractPannexin1 (Panx1) is an ATP release channel expressed in neurons and astrocytes that plays important roles in CNS physiology and pathology. Evidence for the involvement of Panx1 in seizures includes the reduction of epileptiform activity and ictal discharges following Panx1 channel blockade or deletion. However, very little is known about the relative contribution of astrocyte and neuronal Panx1 channels to hyperexcitability. To this end, mice with global and cell type specific deletion of Panx1 were used in one in vivo and two in vitro seizure models. In the low-Mg2+in vitro model, global deletion but not cell-type specific deletion of Panx1 reduced the frequency of epileptiform discharges. This reduced frequency of discharges did not impact the overall power spectra obtained from local field potentials. In the in vitro KA model, in contrast, global or cell type specific deletion of Panx1 did not affect the frequency of discharges, but reduced the overall power spectra. EEG recordings following KA-injection in vivo revealed that although global deletion of Panx1 did not affect the onset of status epilepticus (SE), SE onset was delayed in mice lacking neuronal Panx1 and accelerated in mice lacking astrocyte Panx1. EEG power spectral analysis disclosed a Panx1-dependent cortical region effect; while in the occipital region, overall spectral power was reduced in all three Panx1 genotypes; in the frontal cortex, the overall power was not affected by deletion of Panx1. Together, our results show that the contribution of Panx1 to ictal activity is model, cell-type and brain region dependent.


2019 ◽  
Vol 26 (3) ◽  
pp. 564-575 ◽  
Author(s):  
Sergei N. Orlov ◽  
Jennifer La ◽  
Larisa V. Smolyaninova ◽  
Nickolai O. Dulin

Myofibroblast activation is a critical process in the pathogenesis of tissue fibrosis accounting for 45% of all deaths. No effective therapies are available for the treatment of fibrotic diseases. We focus our mini-review on recent data showing that cardiotonic steroids (CTS) that are known as potent inhibitors of Na+,K+-ATPase affect myofibroblast differentiation in a cell type-specific manner. In cultured human lung fibroblasts (HLF), epithelial cells, and cancer-associated fibroblasts, CTS blocked myofibroblast differentiation triggered by profibrotic cytokine TGF-β. In contrast, in the absence of TGF-β, CTS augmented myofibroblast differentiation of cultured cardiac fibroblasts. The cell type-specific action of CTS in myofibroblast differentiation is consistent with data obtained in in vivo studies. Thus, infusion of ouabain via osmotic mini-pumps attenuated the development of lung fibrosis in bleomycintreated mice, whereas marinobufagenin stimulated renal and cardiac fibrosis in rats with experimental renal injury. In TGF-β-treated HLF, suppression of myofibroblast differentiation by ouabain is mediated by elevation of the [Na+]i/[K+]i ratio and is accompanied by upregulation of cyclooxygenase COX-2 and downregulation of TGF-β receptor TGFBR2. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger, suggesting a key role of [Ca2+]i-mediated signaling. What is the relative impact in tissue fibrosis of [Na+]i,[K+]iindependent signaling documented in several types of CTS-treated cells? Do the different conformational transitions of Na+,K+-ATPase α1 subunit in the presence of ouabain and marinobufagenin contribute to their distinct involvement in myofibroblast differentiation? Additional experiments should be done to answer these questions and to develop novel pharmacological approaches for the treatment of fibrosis-related disorders.


Circulation ◽  
1999 ◽  
Vol 100 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Eri Iwai-Kanai ◽  
Koji Hasegawa ◽  
Makoto Araki ◽  
Tsuyoshi Kakita ◽  
Tatsuya Morimoto ◽  
...  

Methods ◽  
2000 ◽  
Vol 20 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Martin Theis ◽  
Thomas M. Magin ◽  
Achim Plum ◽  
Klaus Willecke

Sign in / Sign up

Export Citation Format

Share Document