scholarly journals Cortical thickness, gyrification and sulcal depth in trigeminal neuralgia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Li ◽  
Jianhao Yan ◽  
Hua Wen ◽  
Jinzhi Lin ◽  
Lianbao Liang ◽  
...  

AbstractNeuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia.

2008 ◽  
Vol 29 (2) ◽  
pp. 222-236 ◽  
Author(s):  
Alex Fornito ◽  
Stephen J. Wood ◽  
Sarah Whittle ◽  
Jack Fuller ◽  
Chris Adamson ◽  
...  

2020 ◽  
pp. 089198872096425
Author(s):  
Rakshathi Basavaraju ◽  
Xinyang Feng ◽  
Jeanelle France ◽  
Edward D. Huey ◽  
Frank A. Provenzano

Objectives: To understand the differential neuroanatomical substrates underlying apathy and depression in Frontotemporal dementia (FTD). Methods: T1-MRIs and clinical data of patients with behavioral and aphasic variants of FTD were obtained from an open database. Cortical thickness was derived, its association with apathy severity and difference between the depressed and not depressed were examined with appropriate covariates. Results: Apathy severity was significantly associated with cortical thinning of the lateral parts of the right sided frontal, temporal and parietal lobes. The right sided orbitofrontal, parsorbitalis and rostral anterior cingulate cortex were thicker in depressed compared to patients not depressed. Conclusions: Greater thickness of right sided ventromedial and inferior frontal cortex in depression compared to patients without depression suggests a possible requisite of gray matter in this particular area for the manifestation of depression in FTD. This study demonstrates a method for deriving neuroanatomical patterns across non-harmonized neuroimaging data in a neurodegenerative disease.


2012 ◽  
Vol 18 (5) ◽  
pp. 624-630 ◽  
Author(s):  
C Schilling ◽  
◽  
S Kühn ◽  
T Paus ◽  
A Romanowski ◽  
...  

2020 ◽  
Author(s):  
Nevena Kraljević ◽  
H. Lina Schaare ◽  
Simon B. Eickhoff ◽  
Peter Kochunov ◽  
B.T.Thomas Yeo ◽  
...  

AbstractAffective experience and cognition are key human traits that are proposed to be inherently coupled in the human brain. Here we studied shared genetic basis of cognitive and affective traits in behavior and brain structure in the twin-based Human Connectome Project sample (n=1087). Both affective and cognitive trait scores were highly heritable and showed significant phenotypic correlation on the behavioral level. We further evaluated the correlation of affect and cognition, respectively, with local brain structure (cortical thickness, subcortical volumes, and surface area). Cortical thickness in the left superior frontal cortex showed a phenotypic association with both affect and cognition, which was driven by shared genetic effects. Quantitative functional decoding of this region yielded associations with cognitive and emotional functioning. This study provides a multi-level approach to study the association between affect and cognition and suggests a convergence of both in superior frontal anatomy.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S194-S194
Author(s):  
Emily Hedges ◽  
Jenny Zinser ◽  
Mihail Dimitrov ◽  
Mathilde Antoniades ◽  
Lilla Porffy ◽  
...  

Abstract Background High-resolution structural MRI has been widely used in clinical research to detect and quantify subtle brain changes in patient populations. Findings from prospective, longitudinal studies show structural brain abnormalities as well as progressive gray matter changes over time in individuals at clinical high risk for psychosis compared to healthy subjects. In recent years, research in this field has seen an increase in multicentre neuroimaging projects, such as EU-GEI, PSYSCAN, PRONIA and NAPLS. Additional sources of variance, alongside known technological and biological factors, may be introduced when MRI images are acquired and combined from different sites. It is imperative for longitudinal multicentre studies to determine the accuracy of quantitative MRI measurements and account for systematic differences both between scanners and across scanning sessions. This is particularly true within psychosis research where morphometric changes as small as 3% or less are expected. Methods Six healthy participants were scanned on four separate occasions over a two-month period at King’s College London; twice on a GE SIGNA HDx 3T scanner used locally in the EU-GEI High Risk Study and twice on a GE MR750 3T scanner used locally in the PSYSCAN study. Both scanners implemented the ADNI-2 T1 protocol which is used globally across the EU-GEI and PSYSCAN consortia. Structural imaging data was segmented using the FreeSurfer 6.0 longitudinal pipeline. Intraclass correlation coefficients (ICCs) with a two-way mixed effects model of absolute agreement were calculated to assess intra- and inter-scanner reliability of brain morphometry. For volumetric studies, ICC values greater than 0.9 indicate ‘excellent’ reliability. Reliability analyses of key regions implicated in psychosis included gray matter volume estimates of the hippocampus, insula, lateral ventricle, orbitofrontal cortex and anterior cingulate cortex, and average cortical thickness measurements of the whole brain, parahippocampus and superior frontal cortex. Results Gray matter volume estimates of all structures yielded ‘excellent’ reliability for both intra-scanner (ICCs of 0.979 – 0.998) and inter-scanner analyses (ICCs of 0.976 – 0.999). Intra-scanner reliability for mean cortical thickness measurements was ‘excellent’ for right total cortex, resulting in an ICC of 0.901, but otherwise ‘good’ for left and total cortex, parahippocampus, superior frontal cortex (ICCs of 0.754 – 0.875). Inter-scanner reliability for mean cortical thickness estimates were most variable across the brain structures. Here, results demonstrated ‘excellent’ reliability for the parahippocampus and left total cortex (ICCs of 0.907 – 0.965), ‘good’ for total cortex (ICC of 0.835), ‘moderate’ for right total cortex, right and total superior frontal cortex (ICCs of 0.520 – 0.676), and ‘poor’ for the left superior frontal cortex which produced an ICC of 0.470. Overall, mean cortical thickness estimates of the superior frontal cortex from two different MR scanners showed the least reliability. Discussion Results confirmed highly reliable estimates for gray matter volumes in all brain structures, both from images acquired within the same scanner and across two different scanners. However, the findings indicated increased variability of mean cortical thickness estimates, particularly between scanners, which should be considered when interpreting study findings. Multicentre structural neuroimaging within the field of psychosis is becoming more common and it must be acknowledged that combining MRI data in multicentre studies will contribute additional sources of variance and potential bias with certain brain regions affected more than others.


2020 ◽  
pp. 1-12
Author(s):  
G. Roberts ◽  
R. Lenroot ◽  
B. Overs ◽  
J. Fullerton ◽  
V. Leung ◽  
...  

Abstract Background Bipolar disorder (BD) is a familial psychiatric disorder associated with frontotemporal and subcortical brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about structural brain trajectories in those at risk. Method Neuroimaging was conducted at baseline and at 2-year follow-up interval in 90 high-risk individuals with a first-degree BD relative (HR), and 56 participants with no family history of mental illness who could have non-BD diagnoses. All 146 subjects were aged 12–30 years at baseline. We examined longitudinal change in gray and white matter volume, cortical thickness, and surface area in the frontotemporal cortex and subcortical regions. Results Compared to controls, HR participants showed accelerated cortical thinning and volume reduction in right lateralised frontal regions, including the inferior frontal gyrus, lateral orbitofrontal cortex, frontal pole and rostral middle frontal gyrus. Independent of time, the HR group had greater cortical thickness in the left caudal anterior cingulate cortex, larger volume in the right medial orbitofrontal cortex and greater area of right accumbens, compared to controls. This pattern was evident even in those without the new onset of psychopathology during the inter-scan interval. Conclusions This study suggests that differences previously observed in BD are developing prior to the onset of the disorder. The pattern of pathological acceleration of cortical thinning is likely consistent with a disturbance of molecular mechanisms responsible for normal cortical thinning. We also demonstrate that neuroanatomical differences in HR individuals may be progressive in some regions and stable in others.


2021 ◽  
Author(s):  
Timothy J. Meeker ◽  
Anne-Christine Schmid ◽  
Michael L. Keaser ◽  
Shariq A. Khan ◽  
Rao P. Gullapalli ◽  
...  

AbstractIntroductionResting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC changes accompanying tonic pain in pain-free persons is rare. A brain network disrupted during chronic pain is a network we term the Descending Pain Modulatory Network (DPMN). Here, we evaluate the effect of tonic pain on FC of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN).MethodsIn 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. We used functional MRI to measure resting BOLD signal during pain-free rest where participants experienced warmth and tonic pain where participants experienced the same temperature thermode combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity with FC during both states. We hypothesized tonic pain would disrupt FC dyads within the DPMN. We used partial correlation to determine FC correlated with pain intensity and BOLD signal.ResultsOf hypothesized FC dyads, PAG and subgenual ACC was weakly disrupted during tonic pain (F=3.34; p=0.074; pain-free>pain d=0.25). sgACC-PAG FC became positively related to pain intensity (R=0.38; t=2.81; p=0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R=0.44; t=3.43; p=0.001). During tonic pain, FC of this connection was abolished (paired t=-3.17; p=0.0026). During pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During tonic pain, FC between left AMYG and right inferior temporal and superior frontal gyri negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC and right claustrum; left and right primary visual cortex; right middle temporal gyrus and right temporo-occipitoparietal junction. Finally, subsequent pain positively correlated with PAG FC and left cerebellum, left dorsolateral prefrontal, right posterior cingulate cortex and paracentral lobule, inferior parietal lobule, medial precuneus and PBN.ConclusionWe demonstrate 1) tonic pain weakly disrupts of sgACC-PAG FC; 2) sgACC-PAG tonic pain FC positively correlates with pain; 3) right PBN-PAG FC predicts subsequent pain and is abolished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which predict intensity of tonic pain. Our findings suggest specific connectivity patterns within the DPMN at rest predict experienced pain and are modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation and biomarkers to guide interventions.HighlightsParabrachial-periaqueductal gray (PAG) functional connectivity (FC) predicts painSubgenual anterior cingulate cortex-PAG FC correlates with pain during tonic painPAG- and amydalocortical networks at rest predict tonic pain intensityResting FC of PAG supports cortical targets of neuromodulation to control pain


2021 ◽  
Vol 1 (1) ◽  
pp. 13-22
Author(s):  
Huiru Li ◽  
Huawei Zhang ◽  
Li Yin ◽  
Feifei Zhang ◽  
Ziqi Chen ◽  
...  

Abstract Background Major depressive disorder (MDD) is associated with high risk of suicide, but the biological underpinnings of suicidality in MDD patients are far from conclusive. Previous neuroimaging studies using voxel-based morphometry (VBM) demonstrated that depressed individuals with suicidal thoughts or behaviors exhibit specific cortical structure alterations. To complement VBM findings, surface-based morphometry (SBM) can provide more details into gray matter structure, including the cortical complexity, cortical thickness and sulcal depth for brain images. Objective This study aims to use SBM to investigate cortical morphology alterations to obtain evidence for neuroanatomical alterations in depressed patients with suicidality. Methods Here, 3D T1-weighted MR images of brain from 39 healthy controls, 40 depressed patients without suicidality (patient controls), and 39 with suicidality (suicidal groups) were analyzed based on SBM to estimate the fractal dimension, gyrification index, sulcal depth, and cortical thickness using the Computational Anatomy Toolbox. Correlation analyses were performed between clinical data and cortical surface measurements from patients. Results Surface-based morphometry showed decreased sulcal depth in the parietal, frontal, limbic, occipital and temporal regions and decreased fractal dimension in the frontal regions in depressed patients with suicidality compared to both healthy and patient controls. Additionally, in patients with depression, the sulcal depth of the left caudal anterior cingulate cortex was negatively correlated with Hamilton Depression Rating Scale scores. Conclusions Depressed patients with suicidality had abnormal cortical morphology in some brain regions within the default mode network, frontolimbic circuitry and temporal regions. These structural deficits may be associated with the dysfunction of emotional processing and impulsivity control. This study provides insights into the underlying neurobiology of the suicidal brain.


Sign in / Sign up

Export Citation Format

Share Document