scholarly journals Modulation of neural activity in frontopolar cortex drives reward-based motor learning

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Herrojo Ruiz ◽  
T. Maudrich ◽  
B. Kalloch ◽  
D. Sammler ◽  
R. Kenville ◽  
...  

AbstractThe frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants practiced novel sequences of finger movements on a digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback to discover a hidden performance goal along a continuous dimension: timing. We additionally modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.

2021 ◽  
Author(s):  
Maria Herrojo Ruiz ◽  
Tom Maudrich ◽  
Benjamin Kalloch ◽  
Daniela Sammler ◽  
Rouven Kenville ◽  
...  

Abstract The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants completed a motor sequence learning task using trialwise reward feedback to discover a hidden goal along a continuous dimension: timing. As additional conditions, we modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.


2020 ◽  
Author(s):  
M Herrojo Ruiz ◽  
T Maudrich ◽  
B Kalloch ◽  
D Sammler ◽  
R Kenville ◽  
...  

AbstractDecision-making is increasingly being recognised to play a role in learning motor skills. Understanding the neural processes regulating motor decision-making is therefore essential to identify mechanisms that contribute to motor skill learning. In decision-making tasks, the frontopolar cortex (FPC) is involved in tracking the reward of different alternative choices, as well as their reliability. Whether this FPC function extends to reward landscapes associated with a continuous movement dimension remains unknown. Here we used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants completed a motor sequence learning task using trial-wise reward feedback to discover a hidden performance goal along a continuous dimension: timing. As a control condition, we modulated contralateral motor cortex (left M1) activity with tDCS, which has been shown to benefit motor skill learning but less consistently reward-based motor learning. Each active tDCS condition was contrasted to sham stimulation. Right FPC-tDCS led to faster learning primarily through a regulation of exploration, without concurrent modulation of motor noise. A Bayesian computational model revealed that following rFPC-tDCS, participants had a higher expectation of reward, consistent with their faster learning. These higher reward estimates were inferred to be less volatile, and thus participants under rFPC-tDCS deemed the mapping between movement and reward to be more stable. Relative to sham, lM1-tDCS did not significantly modulate main behavioral outcomes. The results indicate that brain regions previously linked to decision-making, such as the FPC, are relevant for motor skill learning.


Author(s):  
Maxine T. Sherman ◽  
Zafeirios Fountas ◽  
Anil K. Seth ◽  
Warrick Roseboom

AbstractHuman experience of time exhibits systematic, context-dependent deviations from objective clock time, for example, time is experienced differently at work than on holiday. However, leading explanations of time perception are not equipped to explain these deviations. Here we test the idea that these deviations arise because time estimates are constructed by accumulating the same quantity that guides perception: salient events. To test this, healthy human participants watched naturalistic, silent videos and estimated their duration while fMRI was acquired. Using computational modelling, we show that accumulated events in visual, auditory and somatosensory cortex all predict ‘clock time’, but duration biases reflecting human experience of time could only be predicted from the region involved in modality-specific sensory processing: visual cortex. Our results reveal that human subjective time is based on information arising during the processing of our dynamic sensory environment, providing a computational basis for an end-to-end account of time perception.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelrahman M. Alhilou ◽  
Akiko Shimada ◽  
Camilla I. Svensson ◽  
Peter Svensson ◽  
Malin Ernberg ◽  
...  

AbstractThe neurophysiological mechanisms underlying NGF-induced masseter muscle sensitization and sex-related differences in its effect are not well understood in humans. Therefore, this longitudinal cohort study aimed to investigate the effect of NGF injection on the density and expression of substance P, NMDA-receptors and NGF by the nerve fibers in the human masseter muscle, to correlate expression with pain characteristics, and to determine any possible sex-related differences in these effects of NGF. The magnitude of NGF-induced mechanical sensitization and pain during oral function was significantly greater in women than in men (P < 0.050). Significant positive correlations were found between nerve fiber expression of NMDA-receptors and peak pain intensity (rs = 0.620, P = 0.048), and expression of NMDA-receptors by putative nociceptors and change in temporal summation pain after glutamate injection (rs = 0.561, P = 0.003). In women, there was a significant inverse relationship between the degree of NGF-induced mechanical sensitization and the change in nerve fiber expression of NMDA-receptors alone (rs = − 0.659, P = 0.013), and in combination with NGF (rs = − 0.764, P = 0.001). In conclusion, women displayed a greater magnitude of NGF-induced mechanical sensitization that also was associated with nerve fibers expression of NMDA-receptors, when compared to men. The present findings suggest that, in women, increased peripheral NMDA-receptor expression could be associated with masseter muscle pain sensitivity.


2021 ◽  
pp. 003151252110034
Author(s):  
Craig Turner ◽  
Peter Visentin ◽  
Deanna Oye ◽  
Scott Rathwell ◽  
Gongbing Shan

Piano performance motor learning research requires more “artful” methodologies if it is to meaningfully address music performance as a corporeal art. To date, research has been sparse and it has typically constrained multiple performance variables in order to isolate specific phenomena. This approach has denied the fundamental ethos of music performance which, for elite performers, is an act of interpretation, not mere reproduction. Piano performances are intentionally manipulated for artistic expression. We documented motor movements in the complex task of performance of the first six measures of Chopin’s “Revolutionary” Etude by two anthropometrically different elite pianists. We then discussed their motor strategy selections as influenced by anthropometry and the composer’s musical directives. To quantify the joint angles of the trunk, shoulders, elbows, and wrists, we used a VICON 3 D motion capture system and biomechanical modeling. A Kistler force plate (1 N, Swiss) quantified center of gravity (COG) shifts. Changes in COG and trunk angles had considerable influence on the distal segments of the upper limbs. The shorter pianist used an anticipatory strategy, employing larger shifts in COG and trunk angles to produce dynamic stability as compensation for a smaller stature. Both pianists took advantage of low inertial left shoulder internal rotation and adduction to accommodate large leaps in the music. For the right arm, motor strategizing was confounded by rests in the music. These two cases illustrated, in principle, that expert pianists’ individualized motor behaviors can be explained as compensatory efforts to accommodate both musical goals and anthropometric constraints. Motor learning among piano students can benefit from systematic attention to motor strategies that consider both of these factors.


Author(s):  
Corey George Wadsley ◽  
John Cirillo ◽  
Arne Nieuwenhuys ◽  
Winston D Byblow

Response inhibition is essential for goal-directed behavior within dynamic environments. Selective stopping is a complex form of response inhibition where only part of a multi-effector response must be cancelled. A substantial response delay emerges on unstopped effectors when a cued effector is successfully stopped. This stopping-interference effect is indicative of nonselective response inhibition during selective stopping which may, in-part, be a consequence of functional coupling. The present study examined selective stopping of (de)coupled bimanual responses in healthy human participants of either sex. Participants performed synchronous and asynchronous versions of an anticipatory stop-signal paradigm across two sessions while mu (µ) and beta (β) rhythm were measured with electroencephalography. Results showed that responses were behaviorally decoupled during asynchronous go trials and the extent of response asynchrony was associated with lateralized sensorimotor µ and β desynchronization during response preparation. Selective stopping produced a stopping-interference effect and was marked by a nonselective increase and subsequent rebound in prefrontal and sensorimotor β. In support of the coupling account, stopping-interference was smaller during selective stopping of asynchronous responses, and negatively associated with the magnitude of decoupling. However, the increase in sensorimotor β during selective stopping was equivalent between the stopped and unstopped hand irrespective of response synchrony. Overall, the findings demonstrate that decoupling facilitates selective stopping after a global pause process and emphasizes the importance of considering the influence of both the go and stop context when investigating response inhibition.


2013 ◽  
Vol 110 (1) ◽  
pp. 162-169 ◽  
Author(s):  
O. Le Bon ◽  
P. Linkowski

Previous studies in animals and humans have reported correlations between the durations of rapid eye movement sleep (REMS) episodes and immediately preceding or subsequent non-REMS (NREMS) episodes. The relationship between these two types of sleep is a crucial component in understanding the regulation and neurophysiology of ultradian alternations that occur during sleep. Although the present study replicated previous studies, we also measured NREMS in terms of spectral power Delta and Ultra-Slow bands in addition to duration in examining correlations. The spectral power Delta band, also known as slow-wave activity, measures sleep quantity and is believed to reflect sleep physiology better than mere episode durations. The Ultra-Slow spectral power band was analyzed in parallel. Healthy human participants of both sexes ( n = 26, age range 15–45 yr, n = 12 female) were carefully selected to participate in two consecutive series of home polysomnograms performed after 2 nights of habituation to the equipment. In the analyses, REMS episode durations (minutes) were compared with immediately preceding and immediately subsequent NREMS episodes (Delta and Ultra-Slow power) in each sleep cycle. REMS episode duration was more strongly correlated with preceding NREMS episodes than with subsequent NREMS episodes. However, in most cases, no correlations were observed in either direction. One ultradian sleep regulation hypothesis, which is based on stronger correlations between REMS and subsequent NREMS episode durations, holds that the main purpose of REMS is to reactivate NREMS during each sleep cycle. The present results do not support that hypothesis.


2018 ◽  
Vol 30 (12) ◽  
pp. 1883-1901 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Floris T. Van Vugt ◽  
Ricardo Ruy Valle-Mena ◽  
Shahabeddin Vahdat ◽  
David J. Ostry

The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.


2021 ◽  
Vol 19 (1 Jan-Jun) ◽  
Author(s):  
Himawan Putranta ◽  
Heru Kuswanto ◽  
Mami Hajaroh ◽  
Siti Irene Astuti Dwiningrum ◽  
Rukiyati

Physics learning during the Covid-19 pandemic must still be done so that students can still get physics intake. This phenomenological research aims to explore physics teacher strategies in conducting traditional game-based learning in senior high schools during the Covid-19 pandemic. The research data was collected through in-depth interviews with 10 physics teachers from five senior high schools in Yogyakarta. The ten participants were taken using the purposive sampling technique. The data analysis used analytic reduction which started with identifying important statements from the interview results, determining the core theme, and interpreting the physics learning strategy essence. The research results found that traditional game-based physics learning was carried out using contextual, inquiry, project, and problem-based learning models. The physics material is integrated into traditional games which include tulup, benthik, bekelan, sulamanda, egrang, sekongan, jeblugan, and gobak sodor. Physics learning evaluation is carried out by assessing assignments, performance, presentations, tests, and the results of making students' traditional games. Traditional game-based physics learning is done through distance learning applications such as Zoom, Google Meet, Google Classroom, Google Mail, and WhatsApp. Supporting factors for learning physics based on traditional games include efficient learning, learning can be done anywhere, and students can explore their abilities widely. Inhibiting factors for learning physics based on traditional games include unstable internet networks, students’ different abilities, and never done distance learning. The physics teacher’s competence, the student’s abilities, and the facilities availability are the main factors in determining the learning physics success based on traditional games during the Covid-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document