scholarly journals Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hannah Kiesow ◽  
Lucina Q. Uddin ◽  
Boris C. Bernhardt ◽  
Joseph Kable ◽  
Danilo Bzdok

AbstractIn any stage of life, humans crave connection with other people. In midlife, transitions in social networks can relate to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC) to undergo structural remodelling during midlife. Social behavior, personality predisposition, and demographic profile all have intimate links to the mPFC according in largely disconnected literatures. Here, we explicitly estimated their unique associations with brain structure using a fully Bayesian framework. We weighed against each other a rich collection of 40 UK Biobank traits with their interindividual variation in social brain morphology in ~10,000 middle-aged participants. Household size and daily routines showed several of the largest effects in explaining variation in social brain regions. We also revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction.

2020 ◽  
Author(s):  
Hannah Kiesow ◽  
Lucina Q. Uddin ◽  
Boris C. Bernhardt ◽  
Joseph Kable ◽  
Danilo Bzdok

AbstractIn any stage of life, humans crave social connection with other people. In midlife, transitions in social networks can be related to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have reported that during midlife, especially the medial prefrontal cortex (mPFC) undergoes structural remodeling changes. Social behavior, personality predisposition, and demographic profile all bear intimate relation with the mPFC according to separate literature streams. To integrate these three areas commonly studied in isolation, we explicitly modeled their unique links with brain structure using a fully probabilistic framework. We weighed against each other a rich collection of 40 traits with their interindividual variation in social brain morphology in ~10,000 middle-aged UK Biobank participants (40-69 years at recruitment). Across conducted analyses, household size and daily routine schedules showed several of the largest effects in explaining variation in social brain regions. We revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction. Our population investigation offers a more complete perspective into how adults at the midlife milestone may navigate life depending on their identity and status.


2020 ◽  
Author(s):  
Hannah Kiesow ◽  
R. Nathan Spreng ◽  
Avram J. Holmes ◽  
M. Mallar Chakravarty ◽  
Andre F. Marquand ◽  
...  

AbstractThe complexity of social interactions is a defining property of the human species. Many social neuroscience experiments have sought to map ‘perspective taking’, ‘empathy’, and other canonical psychological constructs to distinguishable brain circuits. This predominant research paradigm was seldom complemented by bottom-up studies of the unknown sources of variation that add up to measures of social brain structure; perhaps due to a lack of large population datasets. We aimed at a systematic de-construction of social brain morphology into its elementary building blocks in the UK Biobank cohort (n=~10,000). Coherent patterns of structural co-variation were explored within a recent atlas of social brain locations, enabled through translating autoencoder algorithms from deep learning. The artificial neural networks learned rich subnetwork representations that became apparent from social brain variation at population scale. The learned subnetworks carried essential information about the co-dependence configurations between social brain regions, with the nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the core. Some of the uncovered subnetworks contributed to predicting examined social traits in general, while other subnetworks helped predict specific facets of social functioning, such as feelings of loneliness. Our population-level evidence indicates that hidden subsystems of the social brain underpin interindividual variation in dissociable aspects of social lifestyle.


2018 ◽  
Vol 373 (1756) ◽  
pp. 20170287 ◽  
Author(s):  
Thomas W. Pike ◽  
Michael Ramsey ◽  
Anna Wilkinson

The relationship between the size and structure of a species' brain and its cognitive capacity has long interested scientists. Generally, this work relates interspecific variation in brain anatomy with performance on a variety of cognitive tasks. However, brains are known to show considerable short-term plasticity in response to a range of social, ecological and environmental factors. Despite this, we have a remarkably poor understanding of how this impacts on an animal's cognitive performance. Here, we non-invasively manipulated the relative size of brain regions associated with processing visual and chemical information in fish (the optic tectum and olfactory bulbs, respectively). We then tested performance in a cognitive task in which information from the two sensory modalities was in conflict. Although the fish could effectively use both visual and chemical information if presented in isolation, when they received cues from both modalities simultaneously, those with a relatively better developed optic tectum showed a greater reliance on visual information, while individuals with relatively better developed olfactory bulbs showed a greater reliance on chemical information. These results suggest that short-term changes in brain structure, possibly resulting from an attempt to minimize the costs of developing unnecessary but energetically expensive brain regions, may have marked effects on cognitive performance. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


2020 ◽  
Author(s):  
Nathania Suryoputri ◽  
Hannah Kiesow ◽  
Danilo Bzdok

AbstractHealth disparity across layers of society involves reasons beyond the healthcare system. Socioeconomic status (SES) shapes people’s daily interaction with their social environment, and is known to impact various health outcomes. Using generative probabilistic modeling, we investigated health satisfaction and complementary indicators of socioeconomic lifestyle in the human social brain. In a population cohort of ~10,000 UK Biobank participants, our first analysis probed the relationship between health status and subjective social standing (i.e., financial satisfaction). We identified volume effects in participants unhappy with their health in regions of the higher associative cortex, especially the dorsomedial prefrontal cortex (dmPFC) and bilateral temporo-parietal junction (TPJ). Specifically, participants in poor subjective health showed deviations in dmPFC and TPJ volume as a function of financial satisfaction. The second analysis on health status and objective social standing (i.e., household income) revealed volume deviations in regions of the limbic system for individuals feeling unhealthy. In particular, low-SES participants dissatisfied with their health showed deviations in volume distributions in the amygdala and hippocampus bilaterally. Thus, our population-level evidence speaks to the possibility that health status and socioeconomic position have characteristic imprints in social brain differentiation.


2020 ◽  
Vol 15 (6) ◽  
pp. 635-647 ◽  
Author(s):  
Arezoo Taebi ◽  
Hannah Kiesow ◽  
Kai Vogeley ◽  
Leonhard Schilbach ◽  
Boris C Bernhardt ◽  
...  

Abstract The social brain hypothesis proposes that the complexity of human brains has coevolved with increasing complexity of social interactions in primate societies. The present study explored the possible relationships between brain morphology and the richness of more intimate ‘inner’ and wider ‘outer’ social circles by integrating Bayesian hierarchical modeling with a large cohort sample from the UK Biobank resource (n = 10 000). In this way, we examined population volume effects in 36 regions of the ‘social brain’, ranging from lower sensory to higher associative cortices. We observed strong volume effects in the visual sensory network for the group of individuals with satisfying friendships. Further, the limbic network displayed several brain regions with substantial volume variations in individuals with a lack of social support. Our population neuroscience approach thus showed that distinct networks of the social brain show different patterns of volume variations linked to the examined social indices.


2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Sandra Martin-Brevet ◽  
Guillaume Huguet ◽  
...  

AbstractMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zegni Triki ◽  
Yasmin Emery ◽  
Magda C. Teles ◽  
Rui F. Oliveira ◽  
Redouan Bshary

AbstractIt is generally agreed that variation in social and/or environmental complexity yields variation in selective pressures on brain anatomy, where more complex brains should yield increased intelligence. While these insights are based on many evolutionary studies, it remains unclear how ecology impacts brain plasticity and subsequently cognitive performance within a species. Here, we show that in wild cleaner fish (Labroides dimidiatus), forebrain size of high-performing individuals tested in an ephemeral reward task covaried positively with cleaner density, while cerebellum size covaried negatively with cleaner density. This unexpected relationship may be explained if we consider that performance in this task reflects the decision rules that individuals use in nature rather than learning abilities: cleaners with relatively larger forebrains used decision-rules that appeared to be locally optimal. Thus, social competence seems to be a suitable proxy of intelligence to understand individual differences under natural conditions.


2009 ◽  
Vol 40 (7) ◽  
pp. 1171-1181 ◽  
Author(s):  
F. Toal ◽  
E. M. Daly ◽  
L. Page ◽  
Q. Deeley ◽  
B. Hallahan ◽  
...  

BackgroundAutistic spectrum disorder (ASD) is characterized by stereotyped/obsessional behaviours and social and communicative deficits. However, there is significant variability in the clinical phenotype; for example, people with autism exhibit language delay whereas those with Asperger syndrome do not. It remains unclear whether localized differences in brain anatomy are associated with variation in the clinical phenotype.MethodWe used voxel-based morphometry (VBM) to investigate brain anatomy in adults with ASD. We included 65 adults diagnosed with ASD (39 with Asperger syndrome and 26 with autism) and 33 controls who did not differ significantly in age or gender.ResultsVBM revealed that subjects with ASD had a significant reduction in grey-matter volume of medial temporal, fusiform and cerebellar regions, and in white matter of the brainstem and cerebellar regions. Furthermore, within the subjects with ASD, brain anatomy varied with clinical phenotype. Those with autism demonstrated an increase in grey matter in frontal and temporal lobe regions that was not present in those with Asperger syndrome.ConclusionsAdults with ASD have significant differences from controls in the anatomy of brain regions implicated in behaviours characterizing the disorder, and this differs according to clinical subtype.


1998 ◽  
Vol 28 (3) ◽  
pp. 645-653 ◽  
Author(s):  
G. N. SMITH ◽  
L. C. KOPALA ◽  
J. S. LAPOINTE ◽  
G. W. MacEWAN ◽  
S. ALTMAN ◽  
...  

Background. Substantial variability in age at onset of illness and course of illness exists between patients with schizophrenia. Recent studies suggest that age at illness onset may be useful in defining biologically and clinically distinct subgroups of patients.Methods. Two hundred and ten males with schizophrenia were classified as early-onset or adult-onset according to their age at first hospitalization. Birth history, clinical functioning and treatment response was assessed in a subgroup of patients. Brain anatomy was assessed from CT scans in all patients and in 32 non-psychiatric control subjects.Results. Patients with an early-onset were likely to have a history of obstetric complications, a poor response to neuroleptic treatment, and showed no relationship between ventricle size and duration of illness. Adult-onset patients were less likely to have obstetric complications, more likely to respond to treatment in the first years of illness, and showed an association between brain structure and duration of illness.Conclusions. The distinction between early- and adult-onset patients may have important aetiological and treatment implications.


Sign in / Sign up

Export Citation Format

Share Document