scholarly journals 3D architecture and structural flexibility revealed in the subfamily of large glutamate dehydrogenases by a mycobacterial enzyme

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Melisa Lázaro ◽  
Roberto Melero ◽  
Charlotte Huet ◽  
Jorge P. López-Alonso ◽  
Sandra Delgado ◽  
...  

AbstractGlutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.

2020 ◽  
Author(s):  
Melisa Lázaro ◽  
Roberto Melero ◽  
Charlotte Huet ◽  
Jorge P. López-Alonso ◽  
Sandra Delgado ◽  
...  

SummaryGlutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1283-C1283
Author(s):  
Gilles Labesse ◽  
Thomas Alexandre ◽  
Laurène Vaupré ◽  
Isabelle Salard-Arnaud ◽  
Joséphine Lai Kee Him ◽  
...  

Inosine-5'-monophosphate dehydrogenase (1, 2) (IMPDH) is a major target for antiviral, antiparasitic, antileukemic and immunosuppressive therapies. It is an ubiquitous and essential enzyme for the biosynthesis of guanosine nucleotides. Up to now, IMPDHs have been reported as tetrameric enzymes harbouring a catalytic domain and a tandem of cystathionine-ß-synthase (CBS) modules. The latter had no precise function assigned despite their nearly absolute conservation among IMPDHs and consistent indication of their importance in vivo. The aim of our study was to provide evidence for the role of the CBS modules on the quaternary structure and on the regulation of IMPDHs. A multidisciplinary approach involving enzymology, site-directed mutagenesis, analytical ultracentrifugation, X-ray crystallography, SAXS, cryo-electron microscopy and molecular modelling allowed us to demonstrate that the Pseudomonas aeruginosa IMPDH is functionally active as an octamer and allosterically regulated by MgATP via each CBS module. Revisiting deposited structural data, we found this newly discovered octameric organization conserved in other IMPDH structures. Meanwhile, we demonstrated that the human IMPDH1 formed two distinct octamers that can pile up into isolated fibres in the presence of MgATP while its pathogenic mutant D226N, localised into the CBS domains, appeared to form massively aggregating fibres. The dramatic impact of this mutation could explain the severe retinopathy adRP10. Our data (3) revealed for the first time that IMPDH has an octameric architecture modulated by MgATP binding to the CBS modules, inducing large structural rearrangements. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or/and macromolecular assembly. Targeting the conserved effector binding pockets identified within the CBS modules might be promising to develop antibacterial compounds or drugs to counter retinopathy onset.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 660
Author(s):  
Peder A. G. Lillebostad ◽  
Arne Raasakka ◽  
Silje J. Hjellbrekke ◽  
Sudarshan Patil ◽  
Trude Røstbø ◽  
...  

The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure–function studies of both full-length AnxA11 and the disease variants being identified in ALS.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Liron Klipcan ◽  
Igal Finarov ◽  
Nina Moor ◽  
Mark G. Safro

Aminoacyl-tRNA synthetases (aaRSs) are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase (PheRS)—bacterial (αβ)2, eukaryotic/archaeal cytosolic (αβ)2, and mitochondrial α—is a prominent example of structural diversity within the aaRSs family. Although archaeal/eukaryotic and bacterial PheRSs share common topology of the core domains and the B3/B4 interface, where editing activity of heterotetrameric PheRSs is localized, the detailed investigation of the three-dimensional structures from three kingdoms revealed significant variations in the local design of their synthetic and editing sites. Moreover, as might be expected from structural data eubacterial, Thermus thermophilus and human cytoplasmic PheRSs acquire different patterns of tRNAPhe anticodon recognition.


1979 ◽  
Vol 178 (2) ◽  
pp. 279-287 ◽  
Author(s):  
D K Podolsky ◽  
M M Weiser

A low-molecular-weight acceptor of galactosyltransferase activity was detected in sera and effusions of patients with extensive maligant disease. This substance was purified to homogeneity from both human serum and effusion by using sequential charcoal/Celite and DEAE-cellulose column chromatography. The purified acceptor was shown to act as substrate for both purified normal and cancer-associated human galactosyltransferase (EC 2.4.1.22) isoenzymes, but had a higher affinity for the cancer-associated isoenzyme (Km = 20 microM) than for the normal isoenzyme (Km = 500 microM). The substrate was found to be a glycopeptide with mol.wt. approx. 3600 determined by polyacrylamide-gel chromatography. Carbohyydate analysis demonstrated only the presence of glucosamine and mannose. Amino acid analysis revealed that the peptide moiety consisted of eight different amino acids, including two residues of asparagine and one residue of serine, but no threonine. These structural data suggest that the acceptor is a fraction of an asparagine-glucosamine type of glycoprotein.


2020 ◽  
Vol 295 (9) ◽  
pp. 2822-2838 ◽  
Author(s):  
Alexandra A. Richter ◽  
Stefanie Kobus ◽  
Laura Czech ◽  
Astrid Hoeppner ◽  
Jan Zarzycki ◽  
...  

Ectoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood. The second step in ectoine biosynthesis is catalyzed by l-2,4-diaminobutyrate acetyltransferase (EctA; EC 2.3.1.178), which transfers the acetyl group from acetyl-CoA to EctB-formed l-2,4-diaminobutyrate (DAB), yielding N-γ-acetyl-l-2,4-diaminobutyrate (N-γ-ADABA), the substrate of ectoine synthase (EctC). Here, we report the biochemical and structural characterization of the EctA enzyme from the thermotolerant bacterium Paenibacillus lautus (Pl). We found that (Pl)EctA forms a homodimer whose enzyme activity is highly regiospecific by producing N-γ-ADABA but not the ectoine catabolic intermediate N-α-acetyl-l-2,4-diaminobutyric acid. High-resolution crystal structures of (Pl)EctA (at 1.2–2.2 Å resolution) (i) for its apo-form, (ii) in complex with CoA, (iii) in complex with DAB, (iv) in complex with both CoA and DAB, and (v) in the presence of the product N-γ-ADABA were obtained. To pinpoint residues involved in DAB binding, we probed the structure-function relationship of (Pl)EctA by site-directed mutagenesis. Phylogenomics shows that EctA-type proteins from both Bacteria and Archaea are evolutionarily highly conserved, including catalytically important residues. Collectively, our biochemical and structural findings yielded detailed insights into the catalytic core of the EctA enzyme that laid the foundation for unraveling its reaction mechanism.


2011 ◽  
Vol 286 (12) ◽  
pp. 10735-10743 ◽  
Author(s):  
Andrey M. Grishin ◽  
Eunice Ajamian ◽  
Limei Tao ◽  
Linhua Zhang ◽  
Robert Menard ◽  
...  

The utilization of phenylacetic acid (PA) in Escherichia coli occurs through a hybrid pathway that shows features of both aerobic and anaerobic metabolism. Oxygenation of the aromatic ring is performed by a multisubunit phenylacetyl-coenzyme A oxygenase complex that shares remote homology of two subunits to well studied bacterial multicomponent monooxygenases and was postulated to form a new bacterial multicomponent monooxygenase subfamily. We expressed the subunits PaaA, B, C, D, and E of the PA-CoA oxygenase and showed that PaaABC, PaaAC, and PaaBC form stable subcomplexes that can be purified. In vitro reconstitution of the oxygenase subunits showed that each of the PaaA, B, C, and E subunits are necessary for catalysis, whereas PaaD is not essential. We have determined the crystal structure of the PaaAC complex in a ligand-free form and with several CoA derivatives. We conclude that PaaAC forms a catalytic core with a monooxygenase fold with PaaA being the catalytic α subunit and PaaC, the structural β subunit. PaaAC forms heterotetramers that are organized very differently from other known multisubunit monooxygenases and lacks their conservative network of hydrogen bonds between the di-iron center and protein surface, suggesting different association with the reductase and different mechanisms of electron transport. The PaaA structure shows adaptation of the common access route to the active site for binding a CoA-bound substrate. The enzyme-substrate complex shows the orientation of the aromatic ring, which is poised for oxygenation at the ortho-position, in accordance with the expected chemistry. The PA-CoA oxygenase complex serves as a paradigm for the new subfamily multicomponent monooxygenases comprising several hundred homologs.


2015 ◽  
Vol 43 (5) ◽  
pp. 894-900 ◽  
Author(s):  
Naomi L. Pollock ◽  
Tracy L. Rimington ◽  
Robert C. Ford

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


1998 ◽  
Vol 332 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Steven VAYRO ◽  
Bryan LO ◽  
Mel SILVERMAN

We have exploited two mutants of the rabbit intestinal Na+/glucose carrier SGLT1 to explore the structure/function relationship of this Na+/glucose transporter in COS-7 cells. A functional N-terminal myc-epitope-tagged SGLT1 protein was constructed and used to determine the plasma-membrane localization of SGLT1. The kinetic and specificity characteristics of the myc-tagged SGLT1 mutant were identical with those of wild-type SGLT1. Immunogold labelling and electron microscopy confirmed the topology of the N-terminal region to be extracellular. Expression of the SGLT1 A166C mutant in these cells showed diminished levels of Na+-dependent α-methyl-d-glucopyranoside transport activity compared with wild-type SGLT1. For SGLT1 A166C, Vmax was 0.92±0.08 nmol/min per mg of protein and Km was 0.98±0.13 mM; for wild-type SGLT1, Vmax was 1.98±0.47 nmol/min per mg of protein and Km was 0.36±0.16 mM. Significantly, phlorrhizin (phloridzin) binding experiments confirmed equal expression of Na+-dependent high-affinity phlorrhizin binding to COS-7 cells expressing SGLT1 A166C or wild-type SGLT1 (Bmax 1.55±0.18 and 1.69±0.57 pmol/mg of protein respectively); Kd values were 0.46±0.15 and 0.51±0.11 µM for SGLT1 A166C and wild-type SGLT1 respectively. The specificity of sugar interaction was unchanged by the A166C mutation. We conclude that the replacement of an alanine residue by cysteine at position 166 has a profound effect on transporter function, resulting in a decrease in transporter turnover rate by a factor of 2. Taken as a whole the functional changes observed by SGLT1 A166C are most consistent with the mutation having caused an altered Na+ interaction with the transporter.


Sign in / Sign up

Export Citation Format

Share Document