scholarly journals Incrimination of shrews as a reservoir for Powassan virus

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Heidi K. Goethert ◽  
Thomas N. Mather ◽  
Richard W. Johnson ◽  
Sam R. Telford

AbstractPowassan virus lineage 2 (deer tick virus) is an emergent threat to American public health, causing severe neurologic disease. Its life cycle in nature remains poorly understood. We use a host-specific retrotransposon-targeted real time PCR assay to test the hypothesis that white-footed mice, considered the main eastern U.S. reservoir of the coinfecting agent of Lyme disease, is the reservoir for deer tick virus. Of 20 virus-infected host-seeking nymphal black-legged ticks 65% fed on shrews and none on mice. The proportion of ticks feeding on shrews at a site is positively associated with prevalence of viral infection, but not the Lyme disease agent. Viral RNA is detected in the brain of one shrew. We conclude that shrews are a likely reservoir host for deer tick virus and that host bloodmeal analysis can provide direct evidence to incriminate reservoir hosts, thereby promoting our understanding of the ecology of tick-borne infections.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Karie E. Robertson ◽  
Chloe D. Truong ◽  
Felicia M. Craciunescu ◽  
Jay-How Yang ◽  
Po-Lin Chiu ◽  
...  

AbstractMembrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Sherwood R. Casjens ◽  
Eddie B. Gilcrease ◽  
Marija Vujadinovic ◽  
Emmanuel F. Mongodin ◽  
Benjamin J. Luft ◽  
...  

2004 ◽  
Vol 72 (4) ◽  
pp. 2442-2444 ◽  
Author(s):  
Dania Richter ◽  
Birte Klug ◽  
Andrew Spielman ◽  
Franz-Rainer Matuschka

ABSTRACT We compared the relative reservoir competence of European wood mice for two genospecies of Lyme disease spirochetes by analyzing susceptibility, intrinsic incubation period, and degree and duration of infectivity. Borrelia afzelii, specializing in particular reservoir hosts, is better adapted to those hosts than is the more generalist genospecies B. burgdorferi sensu stricto.


2014 ◽  
Vol 80 (12) ◽  
pp. 3615-3621 ◽  
Author(s):  
Joanna Fietz ◽  
Jürgen Tomiuk ◽  
Franz-Rainer Matuschka ◽  
Dania Richter

ABSTRACTIn Europe, dormice serve as competent reservoir hosts for particular genospecies of the tick-borne agent of Lyme disease (LD) and seem to support them more efficiently than do mice or voles. The longevity of edible dormice (Glis glis) and their attractiveness for ticks may result in a predominance of LD spirochetes in ticks questing in dormouse habitats. To investigate the role of edible dormice in the transmission cycle of LD spirochetes, we sampled skin tissue from the ear pinnae of dormice inhabiting five different study sites in south western Germany. Of 501 edible dormice, 12.6% harbored DNA of LD spirochetes. Edible dormice were infected most frequently with the pathogenic LD spirocheteBorrelia afzelii. The DNA ofB. gariniiandB. bavariensiswas detected in ca. 0.5% of the examined individuals. No spirochetal DNA was detectable in the skin of edible dormice until July, 6 weeks after they generally start to emerge from their obligate hibernation. Thereafter, the prevalence of spirochetal DNA in edible dormice increased during the remaining period of their 4 to 5 months of activity, reaching nearly 40% in September. Males were more than four times more likely to harbor LD spirochetes than females, and yearlings were almost twice more likely to be infected than adults. The seasonality of the prevalence of LD spirochetes in edible dormice was pronounced and may affect their role as a reservoir host in respect to other hosts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaotian Tang ◽  
Yongguo Cao ◽  
Gunjan Arora ◽  
Jesse Hwang ◽  
Andaleeb Sajid ◽  
...  

Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin - suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection suggesting that ISARL-signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.


2018 ◽  
Vol 55 (3) ◽  
pp. 501-514 ◽  
Author(s):  
Ellen Y Stromdahl ◽  
Robyn M Nadolny ◽  
Graham J Hickling ◽  
Sarah A Hamer ◽  
Nicholas H Ogden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document