scholarly journals Simultaneous silence organizes structured higher-order interactions in neural populations

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hideaki Shimazaki ◽  
Kolia Sadeghi ◽  
Tomoe Ishikawa ◽  
Yuji Ikegaya ◽  
Taro Toyoizumi

Abstract Activity patterns of neural population are constrained by underlying biological mechanisms. These patterns are characterized not only by individual activity rates and pairwise correlations but also by statistical dependencies among groups of neurons larger than two, known as higher-order interactions (HOIs). While HOIs are ubiquitous in neural activity, primary characteristics of HOIs remain unknown. Here, we report that simultaneous silence (SS) of neurons concisely summarizes neural HOIs. Spontaneously active neurons in cultured hippocampal slices express SS that is more frequent than predicted by their individual activity rates and pairwise correlations. The SS explains structured HOIs seen in the data, namely, alternating signs at successive interaction orders. Inhibitory neurons are necessary to maintain significant SS. The structured HOIs predicted by SS were observed in a simple neural population model characterized by spiking nonlinearity and correlated input. These results suggest that SS is a ubiquitous feature of HOIs that constrain neural activity patterns and can influence information processing.

2013 ◽  
Vol 25 (2) ◽  
pp. 289-327 ◽  
Author(s):  
Nicholas Cain ◽  
Eric Shea-Brown

Stimulus from the environment that guides behavior and informs decisions is encoded in the firing rates of neural populations. Neurons in the populations, however, do not spike independently: spike events are correlated from cell to cell. To what degree does this apparent redundancy have an impact on the accuracy with which decisions can be made and the computations required to optimally decide? We explore these questions for two illustrative models of correlation among cells. Each model is statistically identical at the level of pairwise correlations but differs in higher-order statistics that describe the simultaneous activity of larger cell groups. We find that the presence of correlations can diminish the performance attained by an ideal decision maker to either a small or large extent, depending on the nature of the higher-order correlations. Moreover, although this optimal performance can in some cases be obtained using the standard integration-to-bound operation, in others it requires a nonlinear computation on incoming spikes. Overall, we conclude that a given level of pairwise correlations, even when restricted to identical neural populations, may not always indicate redundancies that diminish decision-making performance.


2017 ◽  
Vol 29 (12) ◽  
pp. 3119-3180 ◽  
Author(s):  
Adrianna Loback ◽  
Jason Prentice ◽  
Mark Ioffe ◽  
Michael Berry II

An appealing new principle for neural population codes is that correlations among neurons organize neural activity patterns into a discrete set of clusters, which can each be viewed as a noise-robust population codeword. Previous studies assumed that these codewords corresponded geometrically with local peaks in the probability landscape of neural population responses. Here, we analyze multiple data sets of the responses of approximately 150 retinal ganglion cells and show that local probability peaks are absent under broad, nonrepeated stimulus ensembles, which are characteristic of natural behavior. However, we find that neural activity still forms noise-robust clusters in this regime, albeit clusters with a different geometry. We start by defining a soft local maximum, which is a local probability maximum when constrained to a fixed spike count. Next, we show that soft local maxima are robustly present and can, moreover, be linked across different spike count levels in the probability landscape to form a ridge. We found that these ridges comprise combinations of spiking and silence in the neural population such that all of the spiking neurons are members of the same neuronal community, a notion from network theory. We argue that a neuronal community shares many of the properties of Donald Hebb's classic cell assembly and show that a simple, biologically plausible decoding algorithm can recognize the presence of a specific neuronal community.


2019 ◽  
Vol 116 (30) ◽  
pp. 15210-15215 ◽  
Author(s):  
Emily R. Oby ◽  
Matthew D. Golub ◽  
Jay A. Hennig ◽  
Alan D. Degenhart ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

Learning has been associated with changes in the brain at every level of organization. However, it remains difficult to establish a causal link between specific changes in the brain and new behavioral abilities. We establish that new neural activity patterns emerge with learning. We demonstrate that these new neural activity patterns cause the new behavior. Thus, the formation of new patterns of neural population activity can underlie the learning of new skills.


2018 ◽  
Author(s):  
Ming Bo Cai ◽  
Nicolas W. Schuck ◽  
Jonathan W. Pillow ◽  
Yael Niv

AbstractThe activity of neural populations in the brains of humans and animals can exhibit vastly different spatial patterns when faced with different tasks or environmental stimuli. The degree of similarity between these neural activity patterns in response to different events is used to characterize the representational structure of cognitive states in a neural population. The dominant methods of investigating this similarity structure first estimate neural activity patterns from noisy neural imaging data using linear regression, and then examine the similarity between the estimated patterns. Here, we show that this approach introduces spurious bias structure in the resulting similarity matrix, in particular when applied to fMRI data. This problem is especially severe when the signal-to-noise ratio is low and in cases where experimental conditions cannot be fully randomized in a task. We propose Bayesian Representational Similarity Analysis (BRSA), an alternative method for computing representational similarity, in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data. By marginalizing over the unknown activity patterns, we can directly estimate this covariance structure from imaging data. This method offers significant reductions in bias and allows estimation of neural representational similarity with previously unattained levels of precision at low signal-to-noise ratio. The probabilistic framework allows for jointly analyzing data from a group of participants. The method can also simultaneously estimate a signal-to-noise ratio map that shows where the learned representational structure is supported more strongly. Both this map and the learned covariance matrix can be used as a structured prior for maximum a posteriori estimation of neural activity patterns, which can be further used for fMRI decoding. We make our tool freely available in Brain Imaging Analysis Kit (BrainIAK).Author summaryWe show the severity of the bias introduced when performing representational similarity analysis (RSA) based on neural activity pattern estimated within imaging runs. Our Bayesian RSA method significantly reduces the bias and can learn a shared representational structure across multiple participants. We also demonstrate its extension as a new multi-class decoding tool.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Siddhartha Joshi ◽  
Joshua I Gold

Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when ongoing (baseline) LC activity increases but enhanced when external events evoke transient LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 490
Author(s):  
Jan Mölter ◽  
Geoffrey J. Goodhill

Information theory provides a powerful framework to analyse the representation of sensory stimuli in neural population activity. However, estimating the quantities involved such as entropy and mutual information from finite samples is notoriously hard and any direct estimate is known to be heavily biased. This is especially true when considering large neural populations. We study a simple model of sensory processing and show through a combinatorial argument that, with high probability, for large neural populations any finite number of samples of neural activity in response to a set of stimuli is mutually distinct. As a consequence, the mutual information when estimated directly from empirical histograms will be equal to the stimulus entropy. Importantly, this is the case irrespective of the precise relation between stimulus and neural activity and corresponds to a maximal bias. This argument is general and applies to any application of information theory, where the state space is large and one relies on empirical histograms. Overall, this work highlights the need for alternative approaches for an information theoretic analysis when dealing with large neural populations.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jay A Hennig ◽  
Matthew D Golub ◽  
Peter J Lund ◽  
Patrick T Sadtler ◽  
Emily R Oby ◽  
...  

Millions of neurons drive the activity of hundreds of muscles, meaning many different neural population activity patterns could generate the same movement. Studies have suggested that these redundant (i.e. behaviorally equivalent) activity patterns may be beneficial for neural computation. However, it is unknown what constraints may limit the selection of different redundant activity patterns. We leveraged a brain-computer interface, allowing us to define precisely which neural activity patterns were redundant. Rhesus monkeys made cursor movements by modulating neural activity in primary motor cortex. We attempted to predict the observed distribution of redundant neural activity. Principles inspired by work on muscular redundancy did not accurately predict these distributions. Surprisingly, the distributions of redundant neural activity and task-relevant activity were coupled, which enabled accurate predictions of the distributions of redundant activity. This suggests limits on the extent to which redundancy may be exploited by the brain for computation.


2003 ◽  
Vol 13 (06) ◽  
pp. 479-487
Author(s):  
VIKTOR GÁL ◽  
SONJA GRÜN ◽  
RONALD TETZLAFF

In this paper we show that the Cellular Nonlinear Network Universal Machine (CNN-UM) is an excellent tool for analyzing time series of multidimensional binary signals. The developed algorithm is dedicated to process electrophysiological multi-neuron recordings: our aim is to find specific multidimensional activity patterns, which may reflect higher order functional cell-assemblies. The analysis consists of two parts: first, the occurrences of different patterns are counted, then the statistical significance of each occurrence frequency is calculated separately.


2021 ◽  
Author(s):  
Nicholas Timme ◽  
Baofeng Ma ◽  
David N. Linsenbardt ◽  
Ethan Cornwell ◽  
Taylor Galbari ◽  
...  

Drinking despite negative consequences (compulsive drinking) is a central contributor to high-risk alcohol intake and is associated with poor treatment outcomes in humans. We used a rodent model of compulsive drinking to examine the role played by dorsal medial prefrontal cortex (dmPFC), a brain region involved in maladaptive decision-making in addiction, in this clinically critical phenomenon. We developed novel advances in principal component and change point analyses to dissect neural population representations of specific decision-making variables. Compulsive subjects showed weakened representations of behavioral control signals that relate to drinking within a trial, but strengthened session-wide seeking state representations that were associated with drinking engagement at the start of each drinking opportunity. Finally, chemogenetic-based excitation of dmPFC prevented escalation of compulsive drinking. Collectively, these data indicate that compulsive drinking is associated with alterations in dmPFC neural activity that underlie diminished behavioral control and enhanced seeking.


2020 ◽  
Author(s):  
Siddhartha Joshi ◽  
Joshua I. Gold

AbstractAscending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.


Sign in / Sign up

Export Citation Format

Share Document