Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation

2014 ◽  
Vol 6 (15) ◽  
pp. 6125-6132 ◽  
Author(s):  
Wenjun Li ◽  
Xindi Jin ◽  
Bingyu Gao ◽  
Changle Wang ◽  
Lianchang Zhang

Comparison between the REE data of this work and literature values by Z. S. Yu et al., Sampaio et al., Dulski et al., and Bau et al. in reference materials FER-2 (a) and FER-3 (b) using PAAS-normalized REE patterns.

2001 ◽  
Vol 152 (2-4) ◽  
pp. 439-465
Author(s):  
Uwe Eduard Horstmann ◽  
David Hugh Cornell ◽  
Brian J. Fryer ◽  
Reyno Scheepers ◽  
Feodor Walraven

2021 ◽  
pp. 1-19
Author(s):  
Arlette Pulcherie Djoukouo Soh ◽  
Sylvestre Ganno ◽  
Lianchang Zhang ◽  
Landry Soh Tamehe ◽  
Changle Wang ◽  
...  

Abstract The newly discovered Bibole banded iron formations are located within the Nyong Group at the northwest of the Congo Craton in Cameroon. The Bibole banded iron formations comprise oxide (quartz-magnetite) and mixed oxide-silicate (chlorite-magnetite) facies banded iron formations, which are interbedded with felsic gneiss, phyllite and quartz-chlorite schist. Geochemical studies of the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations reveal that they are composed of >95 wt % Fe2O3 plus SiO2 and have low concentrations of Al2O3, TiO2 and high field strength elements. This indicates that the Bibole banded iron formations were not significantly contaminated by detrital materials. Post-Archaean Australian Shale–normalized rare earth element and yttrium patterns are characterized by positive La and Y anomalies, a relative depletion of light rare earth elements compared to heavy rare earth elements and positive Eu anomalies (average of 1.86 and 1.15 for the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations, respectively), suggesting the influence of low-temperature hydrothermal fluids and seawater. The quartz-magnetite banded iron formations display true negative Ce anomalies, while the chlorite-magnetite banded iron formations lack Ce anomalies. Combined with their distinct Eu anomalies consistent with Algoma- and Superior-type banded iron formations, we suggest that the Bibole banded iron formations were deposited under oxic to suboxic conditions in an extensional basin. SIMS U–Pb data indicate that the Bibole banded iron formations were deposited at 2466 Ma and experienced metamorphism and metasomatism at 2078 Ma during the Eburnean/Trans-Amazonian orogeny. Overall, these findings suggest that the studied banded iron formations probably marked the onset of the rise of atmospheric oxygen, also known as the Great Oxidation Event in the Congo Craton.


2014 ◽  
Vol 33 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Ye Liu ◽  
Chunrong Diwu ◽  
Yan Zhao ◽  
Xiaoming Liu ◽  
Honglin Yuan ◽  
...  

Talanta ◽  
2020 ◽  
Vol 219 ◽  
pp. 121244 ◽  
Author(s):  
Jean-Alix Barrat ◽  
Germain Bayon ◽  
Xudong Wang ◽  
Samuel Le Goff ◽  
Marie-Laure Rouget ◽  
...  

1999 ◽  
Vol 23 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Fung Dai Kin ◽  
M. Isabel Prudêncio ◽  
M. Ângela Gouveia ◽  
Erik Magnusson

2020 ◽  
Vol 86 (10) ◽  
pp. 10-17
Author(s):  
A. A. Kravchenko ◽  
I. V. Nikolaeva ◽  
S. V. Palessky

A technique of the microwave digestion of mafic and ultramafic rocks is developed for ICP-MS determination of the rare earth elements. A series of experiments was carried out to optimize the digestion parameters (temperature, acid ratio, sample mass) in a microwave system MARS-5. A mixture of acids HF and HNO3 in a volume ratio of 4:1 was used at the first stage (60 min, 190°C, maximum pressure 20 atm), and after distilling off the excess fluorides in the form of SiF4 the dry residue was treated with aqua regia (60 min, 190°C, maximum pressure 20 atm). Measurements were carried out using a double-focusing ICP mass spectrometer ELEMENT Finnigan Mat. Multielement standard solution with an acidic composition similar to the analyzed solutions was used for external calibration and indium was used as an internal standard. The detection limits were 0.0002 – 0.008 μg/g. The digestion technique was validated by analysis of the geological reference materials BHVO-2 and BCR-2 (basalts), UB-N (serpentinite), JP-1 (peridotite). The relative standard deviations for the determined elements were below 8% for reference materials BHVO-2, BCR-2, and UB-N, and ranged within 10 – 35% for JP-1 sample. The developed technique was used for determination of the rare earth elements in Kola Peninsula rocks. The correctness of the results was confirmed by comparison with the results of ICP-MS analysis after fusion with lithium metaborate. The rapidity compared to acid decomposition without using a microwave system and low detection limits compared to fusion are the apparent advantages of the developed technique.


Sign in / Sign up

Export Citation Format

Share Document