scholarly journals Directing the orientational alignment of anisotropic magnetic nanoparticles using dynamic magnetic fields

2015 ◽  
Vol 181 ◽  
pp. 449-461 ◽  
Author(s):  
Daniel Hoffelner ◽  
Matthias Kundt ◽  
Annette M. Schmidt ◽  
Emmanuel Kentzinger ◽  
Philipp Bender ◽  
...  

The structure-directing influence of static and dynamic, i.e. rotating, magnetic fields on the orientational alignment of spindle-type hematite particles with a high aspect ratio is investigated. Structural characterization using electron microscopy and small-angle X-ray scattering confirms a nearly collinear particle arrangement with orientation of the main particle axis either parallel or perpendicular to the substrate as directed by the magnetic field geometry. The combination of large structural and magnetocrystalline anisotropies results in significantly different, strongly anisotropic magnetic properties of the assemblies revealed by directional magnetization measurements.

2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


Soft Matter ◽  
2019 ◽  
Vol 15 (44) ◽  
pp. 9018-9030
Author(s):  
Klaus D. Usadel ◽  
Anastasiya Storozhenko ◽  
Igor Arefyev ◽  
Hajnalka Nádasi ◽  
Torsten Trittel ◽  
...  

The dynamics of magnetic nanoparticles in rotating magnetic fields is studied both experimentally and theoretically.


2004 ◽  
Vol 820 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Richard.O. Claus ◽  
Judy S. Riffle ◽  
Michael Zalich

AbstractBiodegradable magnetic nanoparticles were synthesized using Poly(L-Lactic Acid) and magnetite nanoparticles (∼14 nm) at different dosages, and then these nanaoparticles (nanocomposites) and pure magnetic particles were targeted in external magnetic fields by changing the test parameters. The magnetic field test results showed that magnetic saturation, fluid speed, magnetic field distance and particle size were extremely effective for a magnetic guidance system that is needed for an effective drug delivery approach. Thus, it is assumed that such nanoparticles can carry drugs (chemotherapy) to be able to cure cancer tumors as well as many other diseases.


2013 ◽  
Vol 200 ◽  
pp. 261-266
Author(s):  
Igor Virt ◽  
Igor Rudyi ◽  
Ivan Kurilo ◽  
Ivan Lopatynskyi ◽  
Marian Frugynskyi ◽  
...  

Structural and magnetic properties of ceramics Zn1-xCoxO and Zn1-xCrxO are studied. Average sizes of grains are determined by scanning electron microscopy. The magnetic field dependences of magnetic susceptibility are investigated by Faraday method. The relevant theoretical models are chosen.


Author(s):  
Carlos Rinaldi ◽  
Xiaowei He ◽  
Adam Rosenthal ◽  
Thomas Franklin ◽  
Cory Lorenz ◽  
...  

The rheology and behavior of magnetic fluids in the presence of time-varying magnetic fields is illustrated through three sets of experiments. The first involves measurements of ferrofluid torque on a cylindrical spindle under applied uniform rotating magnetic fields. We measure the torque required to restrain a stationary cylindrical test wall in contact with aqueous ferrofluids subjected to the rotating uniform magnetic field generated by a three-phase AC 2-pole motor stator winding. The torque is found to scale linearly with volume, and to be a function of the applied magnetic field amplitude, frequency and direction of rotation. Measurements show that for ferrofluid entirely inside the cylindrical test wall the torque points in the same direction as the magnetic field rotation pseudovector, whereas for ferrofluid entirely outside the cylindrical wall the torque points in the direction opposite to the field rotation pseudovector. The second set of experiments explores the formation of ordered ferrofluid structures in the gap of a Hele-Shaw cell subjected to simultaneous vertical DC and in-plane horizontal rotating magnetic fields. Finally, the third set of experiments illustrates the effect of applied DC fields on the shape of ferrofluid jets and sheets.


Author(s):  
Mihye Shin ◽  
Prasheel Lillaney ◽  
Waldo Hinshaw ◽  
Rebecca Fahrig

The key technical innovation needed for close proximity hybrid x-ray/MR (XMR) imaging systems is a new rotating anode x-ray tube motor that can operate in the presence of strong magnetic fields. In order for the new motor design to be optimized between conflicting design requirements, we implemented a numerical model for evaluating the dynamics of the motor. The model predicts the amount of produced torque, rotation speed, and time to accelerate based on the Lorentz force law; the motor is accelerated by the interaction between the magnetic moments of the motor wire loops and an external magnetic field. It also includes an empirical model of bearing friction and electromagnetic force from the magnetic field. Our proposed computational model is validated by experiments using several different magnitudes of external magnetic fields, which averagely shows an agreement within 0.5 % error during acceleration. We are using this model to improve the efficiency and performance of future iterations of the x-ray tube motor.


2020 ◽  
Vol 10 (5) ◽  
pp. 1638 ◽  
Author(s):  
Afiq Azri Zainudin ◽  
Nurul Azhani Yunus ◽  
Saiful Amri Mazlan ◽  
Muhammad Kashfi Shabdin ◽  
Siti Aishah Abdul Aziz ◽  
...  

Cobalt particles have been introduced as a filler due to the advantages of embedding their magnetic and electrical properties in magnetorheological elastomer (MRE). In the present research, the rheology and resistance of MRE are experimentally evaluated. Isotropic and anisotropic MRE samples containing silicone rubber and cobalt particles were fabricated. The magnetic properties of MRE are conducted using a vibrating sample magnetometer (VSM). The morphological aspects of MRE are observed by using field emission scanning electron microscopy (FESEM) and characterized by energy-dispersive X-ray spectroscopy (EDX). Rheological properties under various magnetic field strengths were measured for the magnetic field, strain amplitude, and frequency sweep test by using a parallel-plate rheometer. Subsequently, the resistance of MRE is tested under different applied forces and magnetic fields. The MRE storage modulus depicted an enhancement in field-dependent modulus across all the applied magnetic fields. The electrical resistance generated from the sample can be manipulated by external magnetic fields and mechanical loads. The conductivity of MRE is due to the existence of cobalt arrangements observed by FESEM. By introducing cobalt as filler and obtaining satisfactory results, the study might open new avenues for cobalt to be used as filler in MRE fabrication for future sensing applications.


1990 ◽  
Vol 139 ◽  
pp. 414-415
Author(s):  
Hitoshi Hanami

X-ray observations have demonstrated that the intergalactic medium in many clusters (cf. Coma, Perseus) contains a thin, hot plasma that may be produced by the accretion process in the gravitational potential of clusters with radiative cooling; this is usually called “cooling flows” (Fabian, Nulsen, and Canizares 1984; Sarazin 1986). On the other hand, the existence of radio halos in some clusters has been reported (Coma: Jaffe, Perola, and Valentijn 1976; A401: Roland et al. 1981). In addition, many elliptical galaxies in the center of clusters are also strong synchrotron radio sources. These radio emissions provide evidence for large amounts of relativistic electrons associated with the active phenomena in or around these galaxies and clusters. We can estimate the values or limits on the magnetic field in the cluster from the limits on the inverse Compton X-ray emission with the synchrotron radio emission (cf. Jaffe 1980). The intracluster field strength Bo is roughly 1 μG. It has been suggested that the influence of cosmic rays and magnetic fields is important for the properties and dynamics of the intercluster medium (Böhringer and Morfill 1988; Soker and Sarazin 1989). If cooling flows are real, this inward flow can impede the escape of the cosmic rays from the central galaxies in clusters and enhance the magnetic field. The confinement of the cosmic rays and the magnetic field in the center of clusters affects the gas of the intracluster medium.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 90-94 ◽  
Author(s):  
Le Tuan Tu ◽  
Luu Van Thiem ◽  
Pham Duc Thang

The magnetic properties in Co-Ni-P nanowires arrays with diameter of 200 nm were investigated. All the samples were prepared by electrodeposition method with pH of 5.5 and at room temperature. During the deposition, a magnetic field in range of 0 - 750 Oe was applied parallel to the wires axis. The crystalline structure and morphology of the samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The hysteresis loops were measured at room temperature using vibrating sample magnetometry (VSM). The mixture of hcp phases of the Co-Ni-P based nanowires has been indicated by the XRD pattern. The obtained results show that with 750 Oe magnetic field applied during deposition we can obtain maximum coercivity value (2180 Oe). The \(M_{r}/M_{s}\) ratio was rapid increased when the magnetic field changed from 0 Oe to 750 Oe.


Sign in / Sign up

Export Citation Format

Share Document