The cis-isomer performs better than the trans-isomer in porphyrin-sensitized solar cells: interfacial electron transport and charge recombination investigations

2015 ◽  
Vol 17 (31) ◽  
pp. 20134-20143 ◽  
Author(s):  
Liyang Luo ◽  
Ram B. Ambre ◽  
Sandeep B. Mane ◽  
Eric Wei-Guang Diau ◽  
Chen-Hsiung Hung

Distinctive differences in the performance of DSSC devices fabricated from cis- and trans-isomers of a zinc porphyrin have been rationalized.

Author(s):  
Suping Jia ◽  
Tong Cheng ◽  
Huinian Zhang ◽  
Hao Wang ◽  
Caihong Hao

Defect states in the TiO2 nanoparticles can cause severe charge recombination and poor electron-transport efficiency when used as a photoanode in dye-sensitized solar cells (DSSCs). Herein, we report a simple and practical way to passivate the surface defects of TiO2 through hydrothermal treating with acetic acid and H2SO4, introducing a high percentage of 101 facets and sulfonic acid functional groups on the TiO2 surface. A high efficiency of 8.12% has been achieved, which is 14% higher than that of untreated TiO2 under the same condition. EIS results prove that the multiacid-treated TiO2 can promote electron transport and reduce charge recombination at the interface of the TiO2 and electrolyte. This work provides an efficient approach to engineer the electron-transport pathway in DSSCs.


2009 ◽  
Vol 2 (6) ◽  
pp. 694 ◽  
Author(s):  
Wei-Hao Chiu ◽  
Chia-Hua Lee ◽  
Hsin-Ming Cheng ◽  
Hsiu-Fen Lin ◽  
Shih-Chieh Liao ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. 1403-1412 ◽  
Author(s):  
Cheng-Wei Lee ◽  
Hsueh-Pei Lu ◽  
Chi-Ming Lan ◽  
Yi-Lin Huang ◽  
You-Ren Liang ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (46) ◽  
pp. 26056-26068 ◽  
Author(s):  
Mahmoud Samadpour

It is proved that the seed layer deposition could be systematically applied in order to enhance the charge transport in the cells.


2012 ◽  
Vol 125 (3) ◽  
pp. 1007-1009 ◽  
Author(s):  
Emanuele Maggio ◽  
Natalia Martsinovich ◽  
Alessandro Troisi

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1931
Author(s):  
Hee-Je Kim ◽  
Jin-Ho Bae ◽  
Hyunwoong Seo ◽  
Masaharu Shiratani ◽  
Chandu Venkata Veera Muralee Gopi

Suppressing the charge recombination at the interface of photoanode/electrolyte is the crucial way to improve the quantum dot sensitized solar cells (QDSSCs) performance. In this scenario, ZnS/SiO2 blocking layer was deposited on TiO2/CuInS2 QDs to inhibit the charge recombination at photoanode/electrolyte interface. As a result, the TiO2/CuInS2/ZnS/SiO2 based QDSSCs delivers a power conversion efficiency (η) value of 4.63%, which is much higher than the TiO2/CuInS2 (2.15%) and TiO2/CuInS2/ZnS (3.23%) based QDSSCs. Impedance spectroscopy and open circuit voltage decay analyses indicate that ZnS/SiO2 passivation layer on TiO2/CuInS2 suppress the charge recombination at the interface of photoanode/electrolyte and enhance the electron lifetime.


Sign in / Sign up

Export Citation Format

Share Document