Studies on the thymine–mercury–thymine base pairing in parallel and anti-parallel DNA duplexes

2015 ◽  
Vol 39 (11) ◽  
pp. 8752-8762 ◽  
Author(s):  
Gaofeng Liu ◽  
Zhiwen Li ◽  
Junfei Zhu ◽  
Yang Liu ◽  
Ying Zhou ◽  
...  

Parallel and anti-parallel T–Hg–T base pairs have different thermal stabilities and conformational influences on DNA duplex structures.

2017 ◽  
Vol 53 (86) ◽  
pp. 11747-11750 ◽  
Author(s):  
Jiro Kondo ◽  
Toru Sugawara ◽  
Hisao Saneyoshi ◽  
Akira Ono

The crystal structures of 4-thiothymine–2AgI–4-thiothymine base pairs in B-form DNA duplexes have been solved.


1988 ◽  
Vol 43 (5) ◽  
pp. 623-630 ◽  
Author(s):  
Kaeko Kikuchi ◽  
Yoshio Taniyama ◽  
Ryuji Marumoto

Abstract DNA decamers containing 2-aminoadenosine were synthesized. Oligonucleotide duplexes including the 2 NH2A-T base pairs were prepared and their Tm profile examined. Contrary to expectation, elevation of the Tm value by the 2 NH2 group is very small in DNA/RNA duplexes. From the CD spectra measurement, we assume that the distortion of the B-DNA structure caused by scattered DNA/RNA base pairing diminishes the efficient hydrogen bonding and base stacking of the duplexes. It was also found that the DNA duplexes containing 2-aminoadenosine hybrids are considerably resistant to ribonuclease T2 or nuclease P1 digestion.


2021 ◽  
Author(s):  
Cyong-Ru Jhan ◽  
Roshan Satange ◽  
Shun-Ching Wang ◽  
Jing-Yi Zeng ◽  
Yih-Chern Horng ◽  
...  

Abstract The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


1978 ◽  
Vol 5 (6) ◽  
pp. 1955-1970 ◽  
Author(s):  
Thomas A. Early ◽  
John Olmsted ◽  
David R. Kearns ◽  
Axel G. Lezius
Keyword(s):  

Molecules ◽  
2014 ◽  
Vol 19 (8) ◽  
pp. 11030-11044 ◽  
Author(s):  
Masayo Suzuki ◽  
Katsuhito Kino ◽  
Masayuki Morikawa ◽  
Takanobu Kobayashi ◽  
Hiroshi Miyazawa
Keyword(s):  

Author(s):  
Gabriel da Silva

Favipiravir (T-705) is an antiviral medication used to treat influenza. T-705 is also currently being trialled as a repurposed COVID-19 treatment. To help accelerate these efforts, this study provides important solution-phase properties of T-705 determined via computational chemistry. Density functional theory (DFT) calculations combined with the SMD continuum solvation model demonstrate that T-705 prefers the aromatic enol form in solution over the ketone tautomer. Deprotonation constants for the conjugate acids of T-705 (pKas) are then evaluated, by combining the DFT/SMD calculations with accurate G4 gas-phase basicities. These calculations indicate that T-705 is a weak base that should not significantly protonate at physiological pH. The preferential site for protonation is at the ring nitrogen ortho to the alcohol functional group (pKa ~ 7.4), followed by protonation of the oxygen on the amide side-chain at more acidic conditions (pKa ~ -9.8). Significantly, protonation of the ring nitrogen produces an acid that can deprotonate to the enol form (pKa ~ -5.1), providing a pathway for their interconversion. Finally, base-pairing of the active ribose-bound form of T-705 to cytidine and uridine is also examined. These calculations indicate that both base pairs have large binding free energies of around 4 – 5 kcal/mol, supporting previous findings that T-705 can bind with both nucleobases, leading to mis-incorporation of these pairs into viral RNA.<br>


2017 ◽  
Vol 13 ◽  
pp. 2671-2681 ◽  
Author(s):  
Jens Müller

In nucleic acid chemistry, metal-mediated base pairs represent a versatile method for the site-specific introduction of metal-based functionality. In metal-mediated base pairs, the hydrogen bonds between complementary nucleobases are replaced by coordinate bonds to one or two transition metal ions located in the helical core. In recent years, the concept of metal-mediated base pairing has found a significant extension by applying it to parallel-stranded DNA duplexes. The antiparallel-stranded orientation of the complementary strands as found in natural B-DNA double helices enforces a cisoid orientation of the glycosidic bonds. To enable the formation of metal-mediated base pairs preferring a transoid orientation of the glycosidic bonds, parallel-stranded duplexes have been investigated. In many cases, such as the well-established cytosine–Ag(I)–cytosine base pair, metal complex formation is more stabilizing in parallel-stranded DNA than in antiparallel-stranded DNA. This review presents an overview of all metal-mediated base pairs reported as yet in parallel-stranded DNA, compares them with their counterparts in regular DNA (where available), and explains the experimental conditions used to stabilize the respective parallel-stranded duplexes.


DNA Research ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 341-352
Author(s):  
Michal Růžička ◽  
Přemysl Souček ◽  
Petr Kulhánek ◽  
Lenka Radová ◽  
Lenka Fajkusová ◽  
...  

Abstract Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


Sign in / Sign up

Export Citation Format

Share Document