scholarly journals Doping anatase TiO2 with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study

2017 ◽  
Vol 19 (3) ◽  
pp. 1945-1952 ◽  
Author(s):  
Masahiko Matsubara ◽  
Rolando Saniz ◽  
Bart Partoens ◽  
Dirk Lamoen

We investigate the role of transition metal atoms of group V-b (V, Nb, and Ta) and VI-b (Cr, Mo, and W) as n- or p-type dopants in anatase TiO2 using thermodynamic principles and density functional theory with the HSE06 hybrid functional.

RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19418-19428
Author(s):  
Yusheng Wang ◽  
Xiaoyan Song ◽  
Nahong Song ◽  
Tianjie Zhang ◽  
Xiaohui Yang ◽  
...  

Using density functional theory calculations, the structural, electronic and magnetic properties of a black phosphorene/Tl2S heterostructure (BP/Tl2S) and the BP/Tl2S intercalated with transition metal atoms (TMs) have been detailed investigated.


2008 ◽  
Vol 15 (05) ◽  
pp. 567-579 ◽  
Author(s):  
WEI FAN ◽  
XIN-GAO GONG

Based on the Density Functional Theory (DFT) with noncollinear-magnetism formulations, we have calculated the magnetism of single 3d transition-metal atoms and the magnetic anisotropies of supported Ni chains on the Au(110)-(1 × 2) surface. Our results for single absorbed 3d transition-metal atoms show that the surface relaxations enhance the orbital moments of left-end elements (Ti, V) and quenches the orbital moments of right-end elements (Fe, Co, Ni) on the Au(110)-(1 × 2) surface. The magnetic anisotropies of Ni atomic chains on the surface are closely related to orbital quenching. The easy magnetized axes change from the direction parallel to the chains to the direction perpendicular to the Ni chains when they absorb on the surface.


2009 ◽  
Vol 152-153 ◽  
pp. 19-24
Author(s):  
Leyla E. Isaeva ◽  
D.I. Bazhanov ◽  
S.S. Kulkov ◽  
S.E. Kulkova ◽  
Igor A. Abrikosov

In this paper we have studied from first-principles the effect of magnetism on the hydrogen-metal interaction and the binding properties of palladium with 3d-alloying atoms in the presence of vacancies induced during hydrogenation process. Our first-principles calculations were carried out by means of state of the art ab-initio method based on density functional theory and all-electron PAW-potentials. We have analyzed the changes of the atomic and electronic structures of palladium crystal induced by the presence of substitutional 3d-alloying atoms, interstitial hydrogen and structural defect (palladium vacancy). The obtained results have shown that magnetism can strongly affect the hydrogen-metal interaction in palladium based alloys. We have also demonstrated that the presence of vacancies in the palladium matrix can alter the interaction energy between hydrogen and alloying transition metal atoms.


2021 ◽  
Vol 23 (1) ◽  
pp. 506-513
Author(s):  
Fei Liu ◽  
Yujie Liao ◽  
Yanbing Wu ◽  
Zongyu Huang ◽  
Huating Liu ◽  
...  

We performed density functional theory calculations to investigate the electronic and magnetic properties of h-BN/MoS2 heterostructures intercalated with 3d transition-metal (TM) atoms, including V, Cr, Mn, Fe, Co, and Ni atoms.


Sign in / Sign up

Export Citation Format

Share Document