Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate

RSC Advances ◽  
2016 ◽  
Vol 6 (85) ◽  
pp. 82112-82117 ◽  
Author(s):  
Yuanfei Lan ◽  
Bixin Jin ◽  
Jingke Deng ◽  
Yunjun Luo

G/Ni aerogels were prepared by a sol–gel method and supercritical CO2 drying. They exhibit a remarkable catalytic performance for the thermal decomposition of AP.

2020 ◽  
pp. 174751982095860
Author(s):  
Mina Sakuragi ◽  
Yoshikazu Takahashi ◽  
Keito Ehara ◽  
Katsuki Kusakabe

The aim of this study is to develop self-standing, ultrathin film, nanosheets with high magnetic response for use in a medical device that can be migrated to a target location in the body by using an external magnetic field. First, iron oxide nanoparticles are synthesized by either the sol-gel method or thermal decomposition. The resulting magnetic properties of the nanoparticles show that the thermal decomposition method provides a greater saturation magnetization value than the sol-gel method. Next, the nanoparticles obtained by the thermal decomposition method are embedded into nanosheets of poly(L-lactide) at varying concentrations. Embedding of the nanoparticles in the composite nanosheets is achieved by the application of an external magnetic field. The composite nanosheets are then characterized. The thickness of the nanosheet increases, and the nanoparticles are well dispersed, with an increase in poly (L-lactide) concentration. The NP-embedded nanosheets are imaged by transmission electron microscopy, which reveals thin, long aggregates aligned in collinear line features. X-ray diffraction results indicate that the magnetic hard axis of the nanoparticles in the nanosheets is aligned in parallel to the plane of the nanosheet by magnetic field application during nanosheet preparation. In addition, the nanosheets at high poly (L-lactide) concentrations that had been subjected to a magnetic field during preparation show a slightly greater magnetic response compared with both nanosheets without magnetic field exposure and nanosheets prepared at low poly (L-lactide) concentrations.


2000 ◽  
Vol 192 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Masaaki Haneda ◽  
Yoshiaki Kintaichi ◽  
Hiromichi Shimada ◽  
Hideaki Hamada

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Yuxin Chen ◽  
Dan Dang ◽  
Binhang Yan ◽  
Yi Cheng

Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.


2013 ◽  
Vol 37 ◽  
pp. 105-108 ◽  
Author(s):  
Jiahao Chen ◽  
Meiqing Shen ◽  
Xinquan Wang ◽  
Jun Wang ◽  
Yugeng Su ◽  
...  

2020 ◽  
Vol 44 (10) ◽  
pp. 3940-3949 ◽  
Author(s):  
Chao Fan ◽  
Li Yang ◽  
Li Luo ◽  
Zhiwei Wu ◽  
Zhangfeng Qin ◽  
...  

The reduction–oxidation treatment can reconstruct Pd nanoparticles, strengthen metal–support interactions and enhance catalytic performance of Pd/H-ZSM-5 in methane combustion.


RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23348-23354 ◽  
Author(s):  
Yiqing Zeng ◽  
Shule Zhang ◽  
Yanan Wang ◽  
Guangli Liu ◽  
Qin Zhong

A series of well-reported Cex–Ti catalysts with a low content of Ce species were synthesized by a sol–gel method.


Sign in / Sign up

Export Citation Format

Share Document