An efficient method to achieve a balanced open circuit voltage and short circuit current density in polymer solar cells

2016 ◽  
Vol 4 (21) ◽  
pp. 8291-8297 ◽  
Author(s):  
Dongfeng Dang ◽  
Pei Zhou ◽  
Linrui Duan ◽  
Xichang Bao ◽  
Renqiang Yang ◽  
...  

Good light harvesting properties and matched energy levels as well as enhanced Jsc value and high Voc value in solar cells were achieved simultaneously by construction of the D–A–π–A type regular terpolymers of PIDT-DTQ-TT, finally leading to the maximum PCE value of 6.63% in PSCs.

2011 ◽  
Vol 23 (40) ◽  
pp. 4636-4643 ◽  
Author(s):  
Zhicai He ◽  
Chengmei Zhong ◽  
Xun Huang ◽  
Wai-Yeung Wong ◽  
Hongbin Wu ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42252-42259 ◽  
Author(s):  
Shengbo Zhu ◽  
Zhongwei An ◽  
Xinbing Chen ◽  
Pei Chen ◽  
Qianfeng Liu

The modification of the π-linker of cyclic thiourea functionalized dyes has a significant effect on the short-circuit current density and open-circuit voltage of dye-sensitized solar cells.


Author(s):  
Rachid Chaoui ◽  
Bedra Mahmoudi ◽  
Yasmine Si Ahmed

Stain etching of silicon solar cells in HF-FeCl3-H2O solutions as a last step in the processing sequence is reported. The etching was carried out without protecting the screen printed contacts. Following optimization of the solution composition and using very short etching times to alleviate the contact degradation problem, the solar cell weighted reflectance (Rw) between 400 and 1100 nm could be reduced from 38.23% to 11.54%. For the best small area cell (~20 cm2), the PS antireflective layer led to a relative improvement of 62.74% in the short-circuit current density, the FF was enhanced by 5.5% absolute, the open-circuit voltage was increased by 1.2 mV and the cell conversion efficiency was raised by 4.1% absolute from 5.4% to 9.5%. The best large area cell (~78 cm2) shows the following changes after porous layer formation: a relative improvement of 45.43% in the short-circuit current density, an improvement in the FF of 7.4% absolute, an increase in the open-circuit voltage by 7.5 mV and an enhancement in the cell efficiency by 4.0% absolute from 6.2% to 10.2%. This method shows a great potential for the cost-effective reduction of reflectance losses in industrial silicon solar cell manufacturing.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2020 ◽  
Vol 8 (19) ◽  
pp. 6513-6520 ◽  
Author(s):  
Xingliang Dong ◽  
Qing Guo ◽  
Qi Liu ◽  
Lei Zhu ◽  
Xia Guo ◽  
...  

A new non-fullerene acceptor named NTO-4F is developed. The optimal PSC based on PM6:NTO-4F achieves a PCE of 11.5% with simultaneously high open-circuit voltage of 0.99 V and short-circuit current density of 19.1 mA cm−2.


2016 ◽  
Vol 49 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Tae Ho Lee ◽  
Min Hee Choi ◽  
Sung Jae Jeon ◽  
Seung Jun Nam ◽  
Yong Won Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document