Surface-enhanced Raman scattering using monolayer graphene-encapsulated Ag nanoparticles as a substrate for sensitive detection of 2,4,6-trinitrotoluene

2017 ◽  
Vol 9 (21) ◽  
pp. 3105-3113 ◽  
Author(s):  
Zhuo Chen ◽  
Lu Qiu ◽  
Yunfei Tian ◽  
Yong-Ill Lee ◽  
Xiandeng Hou ◽  
...  

CVD-grown monolayer graphene-encapsulated Ag nanoparticles are used as an effective SERS substrate for selective and sensitive detection of TNT.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2209
Author(s):  
Fengyan Wang ◽  
Daxue Du ◽  
Shan Liu ◽  
Linna Wang ◽  
Tifeng Jiao ◽  
...  

Many studies widely used SiO2@Ag composite nanospheres for surface enhanced Raman scattering (SERS), which mainly contributes to electromagnetic enhancement. In addition to experiments, previous simulations mostly adopted a two-dimensional model in SERS research, resulting in the three-dimensional information being folded and masked. In this paper, we adopted the three-dimensional model to simulate the electric field distribution of SiO2@Ag composite nanospheres. It is found that when the Ag nanoparticles are distributed densely on the surface of SiO2 nanospheres, light cannot pass through the upper hemisphere due to the local surface plasmon resonance (LSPR) of the Ag nanoparticles, resulting in the upper hemisphere shielding effect; and if there are no Ag nanoparticles distributed densely on the surface of SiO2 nanospheres, the strong LSPR cannot be formed, so the incident light will be guided downward through the whispering gallery mode of the spherical structure. At the same time, we designed relevant experiments to synthesize SiO2@Ag composite nanosphere as SERS substrate and used Rhodamine 6G as a probe molecule to study its SERS performance. This design achieved a significant SERS effect, and is very consistent with our simulation results.


Molekul ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 48 ◽  
Author(s):  
Teguh Endah Saraswati ◽  
Yudha Pratama Putra ◽  
Mohammad Rifqi Ihsan ◽  
Isnaeni Isnaeni ◽  
Yuliati Herbani

Ag nanoparticles were synthesized by laser ablation using an Ag plate in distilled water. This method was performed using a laser with a wavelength of 532 nm and energy of 30 mJ for 60 min. Ag nanoparticles successfully formed, confirmed by the selected area electron diffraction (SAED) which revealed four principal crystal planes of (111), (200), (220) and (311). The size distribution of Ag nanoparticles ranged from 5 to 40 nm, as estimated from electron imaging observed by transmission electron microscope (TEM). Ascorbic acid was used as the analyte to test the characteristics of surface-enhanced Raman scattering (SERS) of colloidal Ag nanoparticles. The concentration of ascorbic acid (1.0, 0.5 and 0.25 wt%) and incubation time (0 and 6 h) were varied to determine the limit of detection and the effect of incubation time. The Raman scattering spectroscopy results showed that the colloidal Ag nanoparticle substrate improved the signals for detection of ascorbic acid.


2015 ◽  
Vol 17 (11) ◽  
pp. 114019 ◽  
Author(s):  
Maximilien Cottat ◽  
Nathalie Lidgi-Guigui ◽  
Frédéric Hamouda ◽  
Bernard Bartenlian ◽  
Divya Venkataraman ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Yanjia Jiang ◽  
Huimin Sun ◽  
Chenjie Gu ◽  
Yongling Zhang ◽  
Tao Jiang

There is a growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge of the pretreatment-free detection and degradation of hazardous molecules in organic...


Sign in / Sign up

Export Citation Format

Share Document