scholarly journals Density functional theoretical studies on the ring-opening polymerization mechanism of oxetane cation series compounds

RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49626-49632
Author(s):  
Hai-Xia Wang ◽  
Min Pu ◽  
Yu-Cheng Ding

The mechanism of ring-opening polymerization of oxetane cation series compounds was investigated using the B3LYP and MP2 methods of density functional theory andab initiomethods, at the basis set levels of 6-31G(d,p) and 6-311++G(d,p).

1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


2009 ◽  
Vol 62 (2) ◽  
pp. 157 ◽  
Author(s):  
Rong-Xiu Zhu ◽  
Ruo-Xi Wang ◽  
Dong-Ju Zhang ◽  
Cheng-Bu Liu

The thiourea-catalyzed methanolysis of d-lactide, a model system for the initiation and propagation of the organocatalyzed ring-opening polymerization (ROP) of lactide, has been studied by performing density functional theory calculations. Both the catalyzed and uncatalyzed reactions are explored along two possible pathways: one involves the stepwise addition–elimination pathway and the other is related to the concerted pathway. It is found that the reaction without the presence of the catalyst is difficult because the barrier involved is as high as 176 kJ mol–1. With the aid of a thiourea catalyst, the barrier is reduced to 88 kJ mol–1 with a preference for the stepwise addition–elimination mechanism over the concerted one. The role of the catalyst has been rationalized by analyzing the frontier molecular orbital interactions between the catalyst and substrates and by performing natural population analysis. Finally, another mechanism involving acyl transfer is discussed for the thiourea-catalyzed ROP.


RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83668-83672 ◽  
Author(s):  
Yasunori Matsui ◽  
Kosuke Usui ◽  
Hiroshi Ikeda ◽  
Stephan Irle

Theoretical studies on triplet–triplet (T1 → T0) fluorescence of the arylated trimethylenemethane (TMM) biradicals, 32˙˙, were carried out using post-Hartree–Fock ab initio and various first principles density functional theory methods.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 540-549 ◽  
Author(s):  
Gennady V Shustov ◽  
Michael TH Liu ◽  
K N Houk

The reactions of the singlet methylene (1a) and dimethylcarbene (1b), with their diazirine precursors, diazirine (2a), and dimethyldiazirine (2b), have been studied theoretically using ab initio and density functional theory. The reaction has no activation barriers for the parent system (1a + 2a) and proceeds via a reactive complex and a transition state with a small negative enthalpy of activation Δ Hnot =298 = -1.1 kcal mol-1, ΔSnot =298 = -34.4 cal mol-1 K-1, ΔG°298 = 9.2 kcal mol-1) for the dimethyl derivatives (1b + 2b). The formation of N-methylene diazirinium ylides (3a,b) is exothermic by 64-80 kcal mol-1. The isomer, 1,3-diazabicyclo[1.1.0]butane (4a), is more stable (5-12 kcal mol-1) than isomer 3a, but can neither be formed by direct thermal reaction of 1a with 2a nor undergo the direct rearrangement into formaldazine (5a). The rearrangement of ylides 3a,b into azines 5a,b proceeds by conrotatory C3-N1 ring opening. The predicted activation barrier of ca. 15 kcal mol-1 for the ring opening in ylide 3b is in excellent agreement with experimental data. The formation of pyridinium ylides from carbenes and pyridine is also studied.Key words: diazirinium ylide, ab initio MO (molecular orbital) theory, density functional theory, pyridinium ylide, CIS (singles configuration interaction) transition energies.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 820
Author(s):  
Sami Fadlallah ◽  
Jashvini Jothieswaran ◽  
Iker Del Rosal ◽  
Laurent Maron ◽  
Fanny Bonnet ◽  
...  

The reactivity of rare-earth complexes RE(BH4)2(C3H5)(THF)x (RE = La, Nd, Sm, Y, Sc) toward the Ring-Opening Polymerization (ROP) of ε-caprolactone (ε-CL) was rationalized by Density Functional Theory (DFT) calculations. Even if the polymerization reaction can be initiated by both RE-(BH4) and RE-allyl bonds, experimental investigations have shown that the initiation via the borohydride ligand was favored, as no allyl group could be detected at the chain-end of the resulting polymers. DFT studies could confirm these observations, as it was highlighted that even if the activation barriers are both accessible, the allyl group is not active for the ROP of ε-CL due to the formation of a highly stable intermediate that disfavors the subsequent ring-opening.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


Sign in / Sign up

Export Citation Format

Share Document