Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene: redox additive and charge storage mechanism

2017 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Pichamon Sirisinudomkit ◽  
Pawin Iamprasertkun ◽  
Atiweena Krittayavathananon ◽  
Tanut Pettong ◽  
Peerapan Dittanet ◽  
...  

Charge storage mechanism by in situ X-ray absorption spectroscopy.

Author(s):  
Su-Yang Hsu ◽  
Feng-Hao Hsu ◽  
Jeng-Lung Chen ◽  
Yu-Song Cheng ◽  
Jin-Ming Chen ◽  
...  

In situ extended X-ray absorption fine structure analysis at the Mn K-edge and Co K-edge of MnCo2S4 nanowire as a supercapacitor electrode.


2019 ◽  
Author(s):  
Nicolas Goubard-Bretesché ◽  
Olivier Crosnier ◽  
Camille Douard ◽  
Antonella Iadecola ◽  
Richard Retoux ◽  
...  

In nano-sized FeWO<sub>4</sub> electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. As for any other pseudocapacitive materials, to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy (XAS) has been successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments were obtained in real time upon cycling the electrode, which allowed investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L<sub>3</sub>-edge measurements point out the involvement of the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox couple in the charge storage while W<sup>6+</sup> acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4. Beside these valuable insights toward the full description of the charge storage mechanism in FeWO<sub>4</sub>, this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive electrode materials.


Author(s):  
Nicolas Goubard-Bretesché ◽  
Olivier Crosnier ◽  
Camille Douard ◽  
Antonella Iadecola ◽  
Richard Retoux ◽  
...  

In nano-sized FeWO<sub>4</sub> electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. As for any other pseudocapacitive materials, to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy (XAS) has been successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments were obtained in real time upon cycling the electrode, which allowed investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L<sub>3</sub>-edge measurements point out the involvement of the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox couple in the charge storage while W<sup>6+</sup> acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4. Beside these valuable insights toward the full description of the charge storage mechanism in FeWO<sub>4</sub>, this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive electrode materials.


2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


2019 ◽  
Vol 7 (35) ◽  
pp. 20414-20424 ◽  
Author(s):  
Jaime S. Sanchez ◽  
Afshin Pendashteh ◽  
Jesus Palma ◽  
Marc Anderson ◽  
Rebeca Marcilla

NiCoMnS2 were subjected to ex situ/operando measurements, shedding light on energy storage mechanism and electroactivation of mixed sulfides in alkaline media.


2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


2018 ◽  
Vol 6 (36) ◽  
pp. 17787-17799 ◽  
Author(s):  
Theresa Schoetz ◽  
Mario Kurniawan ◽  
Michael Stich ◽  
Ralf Peipmann ◽  
Igor Efimov ◽  
...  

Morphological changes of a conductive polymer in an ionic liquid during charging and discharging.


Sign in / Sign up

Export Citation Format

Share Document