scholarly journals Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance

RSC Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 1696-1704 ◽  
Author(s):  
Chang-Peng Xu ◽  
Yong Qi ◽  
Zhuang Cui ◽  
Ya-Jun Yang ◽  
Jian Wang ◽  
...  

This study employed a label-free high-throughput library screening method and verified a drug candidate to reduce TNF-α induced differentiation inhibition.

Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 280
Author(s):  
Bin Wang ◽  
Bosoon Park ◽  
Jing Chen ◽  
Xiaohua He

Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world as well as in the United States. Current detection methods have limitation to implement for rapid field-deployable detection with high volume of samples that are needed for regulatory purposes. Surface plasmon resonance imaging (SPRi) has proved to achieve rapid and label-free screening of multiple pathogens simultaneously, so it was evaluated in this work for the detection of Shiga toxins (Stx1a and Stx2a toxoids were used as the less toxic alternatives to Stx1 and Stx2, respectively). Multiple antibodies (Stx1pAb, Stx1-1mAb, Stx1-2mAb, Stx1d-3mAb, Stx1e-4mAb, Stx2pAb, Stx2-1mAb, Stx2-2mAb, and Stx2-10mAb) were spotted one by one by programed microarrayer, on the same high-throughput biochip with 50-nm gold film through multiple crosslinking and blocking steps to improve the orientation of antibodies on the biochip surface. Shiga toxins were detected based on the SPRi signal difference (ΔR) between immobilized testing antibodies and immunoglobulin G (IgG) control. Among the antibodies tested, Stx1pAb showed the highest sensitivity for Stx1 toxoid, with the limit of detection (LOD) of 50 ng/mL and detection time of 20 min. Both Stx2-1mAb and Stx2-2mAb exhibited high sensitivity for Stx2 toxoid. Furthermore, gold nanoparticles (GNPs) were used to amplify the SPRi signals of monoclonal antibodies in a sandwich platform. The LOD reached the level of picogram (pg)/mL with the help of GNP-antibody conjugate. This result proved that SPRi biochip with selected antibodies has the potential for rapid, high-throughput and multiplex detection of Shiga toxins.


2003 ◽  
Vol 17 (2-3) ◽  
pp. 255-273 ◽  
Author(s):  
Patrick Englebienne ◽  
Anne Van Hoonacker ◽  
Michel Verhas

Surface plasmon resonance (SPR) is a phenomenon occuring at metal surfaces (typically gold and silver) when an incident light beam strikes the surface at a particular angle. Depending on the thickness of a molecular layer at the metal surface, the SPR phenomenon results in a graded reduction in intensity of the reflected light. Biomedical applications take advantage of the exquisite sensitivity of SPR to the refractive index of the medium next to the metal surface, which makes it possible to measure accurately the adsorption of molecules on the metal surface and their eventual interactions with specific ligands. The last ten years have seen a tremendous development of SPR use in biomedical applications. The technique is applied not only to the measurement in real-time of the kinetics of ligand–receptor interactions and to the screening of lead compounds in the pharmaceutical industry, but also to the measurement of DNA hybridization, enzyme–substrate interactions, in polyclonal antibody characterization, epitope mapping, protein conformation studies and label-free immunoassays. Conventional SPR is applied in specialized biosensing instruments. These instruments use expensive sensor chips of limited reuse capacity and require complex chemistry for ligand or protein immobilization. Our laboratory has successfully applied SPR with colloidal gold particles in buffered solution. This application offers many advantages over conventional SPR. The support is cheap, easily synthesized, and can be coated with various proteins or protein–ligand complexes by charge adsorption. With colloidal gold, the SPR phenomenon can be monitored in any UV-vis spectrophotometer. For high‒throughput applications, we have adapted the technology in an automated clinical chemistry analyzer. This simple technology finds application in label-free quantitative immunoassay techniques for proteins and small analytes, in conformational studies with proteins as well as in the real-time association-dissociation measurements of receptor–ligand interactions, for high-throughput screening and lead optimization.


Lab on a Chip ◽  
2010 ◽  
Vol 10 (8) ◽  
pp. 986 ◽  
Author(s):  
Ganeshram Krishnamoorthy ◽  
Edwin T. Carlen ◽  
Johan G. Bomer ◽  
Daniël Wijnperlé ◽  
Hans L. deBoer ◽  
...  

2008 ◽  
Vol 01 (01) ◽  
pp. 107-114 ◽  
Author(s):  
SHUKUAN XU ◽  
GUOLIANG HUANG ◽  
CHENG DENG ◽  
JIANG ZHU ◽  
CHAO HAN ◽  
...  

A surface plasmon resonance imaging (SPRI) system was developed for the discrimination of proteins on a gold surface. As a label-free and high-throughput technique, SPRI enables simultaneously monitoring of the biomolecular interactions at low concentrations. We used SPRI as a label-free and parallel method to detect different proteins based on protein microarray. Bovine Serum Albumin (BSA), Casein and Immunoglobulin G (IgG) were immobilized onto the Au surface of a gold-coated glass chip as spots forming a 6 × 6 matrix. These proteins can be discriminated directly by changing the incident angle of light. Excellent reproducibility for label-free detection of protein molecules was achieved. This SPRI platform represents a simple and robust method for performing high-sensitivity detection of protein microarray.


Sign in / Sign up

Export Citation Format

Share Document