scholarly journals Unique reactivity of B in B[Ge9Y3]3 (Y = H, CH3, BO, CN): formation of a Lewis base

2019 ◽  
Vol 21 (42) ◽  
pp. 23301-23304
Author(s):  
G. Naaresh Reddy ◽  
Rakesh Parida ◽  
R. Inostroza-Rivera ◽  
Arindam Chakraborty ◽  
Puru Jena ◽  
...  

Boron compounds usually exhibit Lewis acidity at the boron center due to the presence of vacant p-orbitals. But using Zintl-ion based groups (Ge9Y3, Y = H, CH3, BO, CN), we can alter Lewis acid nature of B to a Lewis base.

2005 ◽  
Vol 83 (12) ◽  
pp. 2098-2105 ◽  
Author(s):  
Preston A Chase ◽  
Patricio E Romero ◽  
Warren E Piers ◽  
Masood Parvez ◽  
Brian O Patrick

Perfluorinated 9-phenyl-9-borafluorene, 1, is an antiaromatic analog of the well-known tris(pentafluorophenyl)borane. Spectroscopic, structural, and electrochemical studies have been performed on 1 and its Lewis base adducts with MeCN, THF, and PMe3 with a view to assessing its comparative Lewis acid strength relative to B(C6F5)3. For the sterically undemanding Lewis base MeCN, 1 and B(C6F5)3 have comparable LA strengths, while for more sterically prominent THF, 1 is clearly the stronger Lewis acid (LA) based on competition experiments. We conclude that steric factors, rather than antiaromaticity, are the most important determinants in the LA strength differences between 1 and B(C6F5)3.Key words: boranes, Lewis acids, fluorinated compounds, heterocycles.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Rujeeluk Khumho ◽  
Satit Yousatit ◽  
Chawalit Ngamcharussrivichai

5-Hydroxymethylfurfural (HMF) is one of the most important lignocellulosic biomass-derived platform molecules for production of renewable fuel additives, liquid hydrocarbon fuels, and value-added chemicals. The present work developed niobium oxides (Nb2O5) supported on mesoporous carbon/silica nanocomposite (MCS), as novel solid base catalyst for synthesis of HMF via one-pot glucose conversion in a biphasic solvent. The MCS material was prepared via carbonization using natural rubber dispersed in hexagonal mesoporous silica (HMS) as a precursor. The Nb2O5 supported on MCS (Nb/MCS) catalyst with an niobium (Nb) loading amount of 10 wt.% (10-Nb/MCS) was characterized by high dispersion, and so tiny crystallites of Nb2O5, on the MCS surface, good textural properties, and the presence of Bronsted and Lewis acid sites with weak-to-medium strength. By varying the Nb loading amount, the crystallite size of Nb2O5 and molar ratio of Bronsted/Lewis acidity could be tuned. When compared to the pure silica HMS-supported Nb catalyst, the Nb/MCS material showed a superior glucose conversion and HMF yield. The highest HMF yield of 57.5% was achieved at 93.2% glucose conversion when using 10-Nb/MCS as catalyst (5 wt.% loading with respect to the mass of glucose) at 190 °C for 1 h. Furthermore, 10-Nb/MCS had excellent catalytic stability, being reused in the reaction for five consecutive cycles during which both the glucose conversion and HMF yield were insignificantly changed. Its superior performance was ascribed to the suitable ratio of Brønsted/Lewis acid sites, and the hydrophobic properties generated from the carbon moieties dispersed in the MCS nanocomposite.


2014 ◽  
Vol 13 (01) ◽  
pp. 1350076 ◽  
Author(s):  
Bing Liu ◽  
Daxi Wang ◽  
Zhongxue Wang ◽  
Zhen Zhao ◽  
Yu Chen ◽  
...  

The geometries, vibrational frequencies, electronic properties and reactivity of potassium supported on SBA-15 have been theoretically investigated by the density functional theory (DFT) method. The structural model of the potassium supported on SBA-15 was constructed based on our previous work [Wang ZX, Wang DX, Zhao Z, Chen Y, Lan J, A DFT study of the structural units in SBA-15 mesoporous molecular sieve, Comput. Theor. Chem.963, 403, 2011]. This paper is the extension of our previous work. The most favored location of potassium atom was obtained by the calculation of substitution energy. The calculated vibrational frequencies of K /SBA-15 are in good agreement with the experimental results. By analyzing the properties of electronic structure, we found that the O atom of Si - O (2)- K group acts as the Lewis base center and the K atom acts as the Lewis acid center. The reactivity of K /SBA-15 was investigated by calculating the activation of oxygen molecule. The oxygen molecule can be activated by K /SBA-15 with an energy barrier of 103.2 kJ/mol. In the final state, the activated oxygen atoms become new Lewis acid centers, which are predicted to act as the active sites in the catalytic reactions. This study provides a deep insight into the properties of supported potassium catalysts and offers fundamental information for further research.


2006 ◽  
Vol 691 (3) ◽  
pp. 538
Author(s):  
Samuel W. Coghlan ◽  
Richard L. Giles ◽  
Judith A.K. Howard ◽  
Leonard G.F. Patrick ◽  
Michael R. Probert ◽  
...  

2013 ◽  
Vol 135 (40) ◽  
pp. 15225-15237 ◽  
Author(s):  
KaKing Yan ◽  
Juan J. Duchimaza Heredia ◽  
Arkady Ellern ◽  
Mark S. Gordon ◽  
Aaron D. Sadow

2008 ◽  
Vol 49 (48) ◽  
pp. 6768-6772 ◽  
Author(s):  
Palakodety Radha Krishna ◽  
Empati Raja Sekhar ◽  
Florence Mongin

Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

New and updated Lewis acid strengths are listed for 135 cations bonded to oxygen for use with published Lewis base strengths. A strong correlation between Lewis acid strength and ionization energy is shown, and correlation with electronegativity is confirmed.


ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 16292-16300 ◽  
Author(s):  
Gianluca Ciancaleoni
Keyword(s):  

2020 ◽  
Vol 23 (2) ◽  
pp. 185-199
Author(s):  
Muhammad Ageel Ashraf ◽  
Cheng Li ◽  
Fataneh Norouzi ◽  
Dangquan Zhang

Sign in / Sign up

Export Citation Format

Share Document