Deciphering the near-field response with the far-field wavelength-scanned SERS spectra of 4-mercaptopyridine adsorbed on gold nanocolloidal particles entrapped in Langmuir Reverse Schaefer film of 5CB liquid crystal molecules

2020 ◽  
Vol 22 (16) ◽  
pp. 8719-8729 ◽  
Author(s):  
Sumit Kumar Das ◽  
Tara Shankar Bhattacharya ◽  
Joydeep Chowdhury

Wavelength-scanned SERS spectra of 4-mercaptopyridine molecule adsorbed on gold nanoparticles immobilised in a Langmuir Reverse Schaefer film of 5CB molecules.

2016 ◽  
Vol 25 (9) ◽  
pp. 094222 ◽  
Author(s):  
Lei Wang ◽  
Shijun Ge ◽  
Zhaoxian Chen ◽  
Wei Hu ◽  
Yanqing Lu

AIAA Journal ◽  
2015 ◽  
Vol 53 (7) ◽  
pp. 1894-1909 ◽  
Author(s):  
M. Crawley ◽  
A. Sinha ◽  
M. Samimy

Geophysics ◽  
1991 ◽  
Vol 56 (2) ◽  
pp. 255-264 ◽  
Author(s):  
N. B. Boschetto ◽  
G. W. Hohmann

Modeling the controlled‐source audiofrequency magnetotelluric (CSAMT) responses of simple three‐dimensional (3-D) structures due to a grounded electric bipole confirms that the CSAMT technique accurately simulates plane‐wave results in the far‐field zone of the transmitter. However, at receiver sites located above large conductive or resistive bodies, the presence of the inhomogeneity extends or reduces, respectively, the frequency range of the far‐field zone. Measurements made on the surface beyond a large 3-D body display a small but spatially extensive effect due to decay of the artificial primary field. Situating a 3-D inhomogeneity beneath the source permits an evaluation of “source overprint” effects. When such a body is resistive, a slight shift in the near‐field response to higher frequencies occurs. When a body below the transmitter is conductive, it is possible to make far‐field measurements closer to the transmitter or lower in frequency. However, as the size of the conductor and its secondary‐field response increases, large transition‐zone responses distort the data. For both a plane‐wave source and a finite source, current channeling into a 3-D conductor from conductive overburden enhances the response of a target. The modeled response of a dike‐like conductor shows no better results for either the broadside or collinear configuration. The location and extent of such a body are better defined when measuring the electric field perpendicular to the strike of the prism, but resistivity estimates are better when using the electric field parallel to the strike of the prism, irrespective of transmitter orientation. Models designed from data collected at Marionoak, Tasmania, yield results which indicate that the thin, vertical graphitic unit intersected by drilling is detectable by the CSAMT method, but probably is not the sole source of the large anomaly seen in the CSAMT data.


2008 ◽  
Vol 19 (39) ◽  
pp. 395705 ◽  
Author(s):  
YuMeng You ◽  
ChaoLing Du ◽  
Yun Ma ◽  
Johnson Kasim ◽  
Ting Yu ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tom A. W. Wolterink ◽  
Robin D. Buijs ◽  
Giampiero Gerini ◽  
A. Femius Koenderink ◽  
Ewold Verhagen

Abstract We study how nanophotonic structures can be used for determining the position of a nearby nanoscale object with subwavelength accuracy. Through perturbing the near-field environment of a metasurface transducer consisting of nano-apertures in a metallic film, the location of the nanoscale object is transduced into the transducer’s far-field optical response. By monitoring the scattering pattern of the nanophotonic near-field transducer and comparing it to measured reference data, we demonstrate the two-dimensional localization of the object accurate to 24 nm across an area of 2 × 2 μm. We find that adding complexity to the nanophotonic transducer allows localization over a larger area while maintaining resolution, as it enables encoding more information on the position of the object in the transducer’s far-field response.


Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

Sign in / Sign up

Export Citation Format

Share Document