scholarly journals Electronic, optical and thermoelectric properties of Fe2ZrP compound determined via first-principles calculations

RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.

2019 ◽  
Vol 7 (24) ◽  
pp. 7308-7317 ◽  
Author(s):  
Safoura Nayeb Sadeghi ◽  
Mona Zebarjadi ◽  
Keivan Esfarjani

Using first-principles density functional theory (DFT) calculations combined with the Boltzmann transport theory, we investigate the effect of strain on the electronic and thermoelectric transport properties of the 1T-TiSe2 monolayer, a two-dimensional (2D) material, and compare it with the bulk phase within the PBE, LDA+U and HSE exchange–correlation functionals.


2021 ◽  
Author(s):  
Megha Goyal ◽  
M.M. Sinha

Abstract Heusler compounds are a tuneable class of material with a cubic crystal structure that can serve as a platform to study the topological phase of a material. These materials have numerous technological and scientific applications. So, in the present work, the mechanical, thermodynamical, and thermoelectric properties of LaAuPb in the topological phase have been reported by using density functional theory and Boltzmann transport theory. LaAuPb is mechanically stable, and the Poisson ratio reveals its ductile nature. The specific heat of the proposed compound at room temperature is 73.94 J K-1 mol-1 at constant volume. Debye’s temperature is estimated to be 188.64K. Moreover, the lattice thermal conductivity of the compound is 14.64 W/mK and 3.66 W/mK at 300K and 1200K, respectively. Good thermoelectric response of LaAuPb can be confirmed by its high value of the figure of merit (0.46) at 1200K. Hence, it is a potential material for thermoelectric applications. This work will help future researchers to better understand the stability, nature and behaviour of LaAuPb in material fabrication.


2018 ◽  
Vol 20 (45) ◽  
pp. 28575-28582 ◽  
Author(s):  
Bhagwati Prasad Bahuguna ◽  
L. K. Saini ◽  
Rajesh O. Sharma ◽  
Brajesh Tiwari

We have investigated the structural, electronic and thermoelectric properties of GaS, GaSe and GaTe monolayers based on the first-principles approach by using density functional theory and the semi-classical Boltzmann transport equation.


2018 ◽  
Vol 20 (3) ◽  
pp. 1809-1816 ◽  
Author(s):  
Robert L. González-Romero ◽  
Alex Antonelli ◽  
Anderson S. Chaves ◽  
Juan J. Meléndez

An ultralow lattice thermal conductivity of 0.14 W m−1 K−1 along the b⃑ axis of As2Se3 single crystals was obtained at 300 K by first-principles calculations involving density functional theory and the resolution of the Boltzmann transport equation.


2015 ◽  
Vol 17 (44) ◽  
pp. 29647-29654 ◽  
Author(s):  
Yasumitsu Suzuki ◽  
Hisao Nakamura

We study the thermoelectric properties of tin selenide (SnSe) by using first-principles calculations coupled with the Boltzmann transport theory.


2017 ◽  
Vol 31 (29) ◽  
pp. 1750265 ◽  
Author(s):  
Guangtao Wang ◽  
Dongyang Wang ◽  
Xianbiao Shi ◽  
Yufeng Peng

We studied the crystal and electronic structures of LaOBiSSe and LaOBiSeS using first-principles calculations and confirmed that the LaOBiSSe (S atoms on the top of BiCh2 layer and Se atoms in the inner of it) is the stable structure. Then we calculate the thermoelectric properties of LaOBiSSe using the standard Boltzmann transport theory. The in-plane thermoelectric performance are better than that along the c-axis in this n-type material. The in-plane power factor [Formula: see text] of n-type LaOBiSSe is as high as 12 [Formula: see text]W/cmK2 at 900 K with figure of merit ZT = 0.53 and [Formula: see text]. The ZT maximum appears around [Formula: see text] in a wide temperature region. The results indicate that LaOBiSSe is a 2D material with good thermal performance in n-type doping.


2013 ◽  
Vol 91 (1) ◽  
pp. 81-84
Author(s):  
Aqeel Mohsin Ali

The density functional theory calculations are applied for C20 cage fullerenes. Furan, pyrole, and phenylvinyle monomers are made to interact with a C20 cage at the same C position. An electric field was applied with varying strength. Computations were carried out for all cases at the B3LYP/6-31G* level. The structure, energetic, and relative stabilities of the compounds were compared with each other and analyzed. In addition, the electric field dependent and independent electronic transition spectra of the proposed stable neutral C20 cage are investigated.


Author(s):  
S. Belhachi ◽  
S. Amari ◽  
B. Bouhafs

We present first-principles calculations of the structural, electronic and magnetic properties of Gd-doped [Formula: see text] based on the density functional theory within [Formula: see text] schemes. It is found that Gd atom favors substituting for Al site. Compared with undoped [Formula: see text], the Gd-doped [Formula: see text] has become an indirect band gap semiconductor of reduced band gap. The magnetic moment [Formula: see text] per molecule mainly comes from Gd ion with little contribution from the Ga, Al and N atoms. It is confirmed that the ferromagnetic configuration is stable for [Formula: see text]. It is found also that there is hybridization between the forbital of the Gd atom and the [Formula: see text] orbital of the N atom.


2013 ◽  
Vol 803 ◽  
pp. 370-374
Author(s):  
Si Jia Zhao ◽  
Li Ying Zhou ◽  
Fu He Wang

The adsorption of Cl on the γ-TiAl (100) surface is studied by using the first-principles calculations based on the density-functional theory. The calculated result show that the most stable site for Cl adsorption is the four-fold-hollow site denoted by HFa. The binding energy per Cl atom increases when the coverage is more than 0.75ML. The Cl atoms are more likely to interact with the Ti atoms than the Al atoms from not only the electronic structure but also the atomic structure.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102172-102182 ◽  
Author(s):  
Liang Zhang ◽  
Tie-Yu Lü ◽  
Hui-Qiong Wang ◽  
Wen-Xing Zhang ◽  
Shuo-Wang Yang ◽  
...  

The electronic structures and thermoelectric properties of (SrO)m(SrTiO3)n superlattices have been investigated using first-principles calculations and the Boltzmann transport theory.


Sign in / Sign up

Export Citation Format

Share Document