scholarly journals A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules

2019 ◽  
Vol 10 (36) ◽  
pp. 8374-8383 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Aditya Sonpal ◽  
Mojtaba Haghighatlari ◽  
Andrew J. Schultz ◽  
Johannes Hachmann

Computational pipeline for the accelerated discovery of organic materials with high refractive index via high-throughput screening and machine learning.

2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2019 ◽  
Vol 123 (23) ◽  
pp. 14610-14618 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

2021 ◽  
Author(s):  
Omar Abdul Wahab

<p>This paper addresses the challenge of sustaining the intrusion detection effectiveness of machine learning-based intrusion detection systems in the Internet of Things (IoT) in the presence of concept and data drifts. Data drift is a phenomenon which embodies the change that happens in the relationships among the independent features, which is mainly due to changes in the data quality over time. Concept drift is a phenomenon which depicts the change in the relationships between input and output data in the machine learning model over time. To address data drifts, we first propose a series of data preparation steps that help improve the quality of the data and avoid inconsistencies. To counter concept drifts, we capitalize on an online deep neural network model that relies on an ensemble of varying depth neural networks that cooperate and compete together to enable the model to steadily learn and adapt as new data come, thus allowing for stable and long-lasting learning. Experiments conducted on a real-world IoT-based intrusion detection dataset, designed to address concept and data drifts, suggest that our solution stabilizes the performance of the intrusion detection on both the training and testing data compared to the static deep neural network model, which is widely used for intrusion detection.</p>


2020 ◽  
Vol 4 (2) ◽  
pp. 90-96
Author(s):  
Ishita Charkraborty ◽  
◽  
Brent Vyvial ◽  

With the advent of machine learning, data-based models can be used to increase efficiency and reduce cost for the characterization of various anomalies in pipelines. In this work, artificial intelligence is used to classify pipeline dents directly from the in-line inspection (ILI) data according to their risk categories. A deep neural network model is built with available ILI data, and the resulting machine learning model requires only the ILI data as an input to classify dents in different risk categories. Using a machine learning based model eliminates the need for conducting detailed engineering analysis to determine the effects of dents on the integrity of the pipeline. Concepts from computer vision are used to build the deep neural network using the available data. The deep neural network model is then trained on a sub set of the available ILI data and the model is tested for accuracy on a previously unseen set of the available data. The developed model predicts risk factors associated with a dent with 94% accuracy for a previously unseen data set.


2021 ◽  
Author(s):  
Omar Abdul Wahab

<p>This paper addresses the challenge of sustaining the intrusion detection effectiveness of machine learning-based intrusion detection systems in the Internet of Things (IoT) in the presence of concept and data drifts. Data drift is a phenomenon which embodies the change that happens in the relationships among the independent features, which is mainly due to changes in the data quality over time. Concept drift is a phenomenon which depicts the change in the relationships between input and output data in the machine learning model over time. To address data drifts, we first propose a series of data preparation steps that help improve the quality of the data and avoid inconsistencies. To counter concept drifts, we capitalize on an online deep neural network model that relies on an ensemble of varying depth neural networks that cooperate and compete together to enable the model to steadily learn and adapt as new data come, thus allowing for stable and long-lasting learning. Experiments conducted on a real-world IoT-based intrusion detection dataset, designed to address concept and data drifts, suggest that our solution stabilizes the performance of the intrusion detection on both the training and testing data compared to the static deep neural network model, which is widely used for intrusion detection.</p>


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


Sign in / Sign up

Export Citation Format

Share Document