Quantitative fluorine and bromine detection under ambient conditions via molecular emission

2020 ◽  
Vol 35 (11) ◽  
pp. 2620-2626 ◽  
Author(s):  
M. A. Wakil ◽  
Zeyad T. Alwahabi

Typical MW-LIBS spectra for different fluorine concentration as indicated. This yields a Florine LoD of 106 ± 6 μg g−1.

2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. Weitkamp, J. Neuefeind, H. E. Fisch

2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


2020 ◽  
Author(s):  
Kseniya A. Mariewskaya ◽  
Denis Larkin ◽  
Yuri Samoilichenko ◽  
Vladimir Korshun ◽  
Alex Ustinov

Molecular fluorescence is a phenomenon that is usually observed in condensed phase. It is strongly affected by molecular interactions. The study of fluorescence spectra in the gas phase can provide a nearly-ideal model for the evaluation of intrinsic properties of the fluorophores. Unfortunately, most conventional fluorophores are not volatile enough to allow study of their fluorescence in the gas phase. Here we report very bright gas phase fluorescence of simple BODIPY dyes that can be readily observed at atmospheric pressure using conventional fluorescence instrumentation. To our knowledge, this is the first example of visible range gas phase fluorescence at near ambient conditions. Evaporation of the dye in vacuum allowed us to demonstrate organic molecular electroluminescence in gas discharge excited by electric field produced by a Tesla coil.


2018 ◽  
Author(s):  
Dmitrii Moldarev ◽  
Elbruz M. Baba ◽  
Marcos V. Moro ◽  
Chang C. You ◽  
Smagul Zh. Karazhanov ◽  
...  

It has been recently demonstrated that yttrium oxyhydride(YHO) films can exhibit reversible photochromic properties when exposed to illumination at ambient conditions. This switchable optical propertyenables their utilization in many technological applications, such as smart windows, sensors, goggles, medical devices, etc. However, how the composition of the films affects their optical properties is not fully clear and therefore demands a straightforward investigation. In this work, the composition of YHO films manufactured by reactive magnetron sputtering under different conditions is deduced in a ternary diagram from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). The results suggest that stable compounds are formed with a specificchemical formula – YH<sub>2-δ</sub>O<sub>δ</sub>. In addition, optical and electrical properties of the films are investigated, and a correlation with their compositions is established. The corresponding photochromic response is found in a specific oxygen concentration range (0.45 < δ < 1.5) with maximum and minimum of magnitude on the lower and higher border, respectively.


Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


2019 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence E. Fried ◽  
Sorin Bastea

<p>The interatomic Chebyshev Interaction Model for Efficient Simulation (ChIMES) is based on linear combinations of Chebyshev polynomials describing explicit two- and three-body interactions. Recently, the ChIMES model has been developed and applied to a molten metallic system of a single atom type (carbon), as well as a non-reactive molecular system of two atom types at ambient conditions (water). Here, we continue application of ChIMES to increasingly complex problems through extension to a reactive system. Specifically, we develop a ChIMES model for carbon monoxide under extreme conditions, with built-in transferability to nearby state points. We demonstrate that the resulting model recovers much of the accuracy of DFT while exhibiting a 10<sup>4</sup>increase in efficiency, linear system size scalability and the ability to overcome the significant system size effects exhibited by DFT.</p>


Sign in / Sign up

Export Citation Format

Share Document