Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields

Soft Matter ◽  
2021 ◽  
Author(s):  
Mohsen Abbaspour ◽  
Hamed Akbarzadeh ◽  
Sirous Salemi ◽  
Leila Bahmanipour

Applying the electric fields at all three dimensions disappeared the pentagonal shape and the confined water molecules formed a circle shape when the Ex was applied (direction of the CNT length).

2016 ◽  
Vol 18 (48) ◽  
pp. 33310-33319 ◽  
Author(s):  
Winarto Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

Under an electric field, water prefers to fill CNTs over ethanol, and electrostatic interactions within the ordered structure of the water molecules determine the separation effects.


2015 ◽  
Vol 142 (12) ◽  
pp. 124701 ◽  
Author(s):  
Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1893-1901 ◽  
Author(s):  
Hemant Kumar ◽  
Chandan Dasgupta ◽  
Prabal K. Maiti

Various structural, dynamic and thermodynamic properties of water molecules confined in single-wall carbon nanotubes are investigated using both polarizable and non-polarizable water models.


2016 ◽  
Vol 842 ◽  
pp. 453-456 ◽  
Author(s):  
Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

Water confined in carbon nanotubes (CNTs) under the influence of an electric field has interesting properties that are potential for nanofluidic-based applications. With molecular dynamics simulations, this work shows that the electric field induces formation of ordered structures of water molecules in the CNTs. Formation of the ordered structures strengthens the electrostatic interaction between the water molecules. As a result, water strongly prefers to fill CNTs over methanol and it produces a separation effect. Interestingly, the separation effect with the electric field does not decrease for a wide range of CNT diameter.


2021 ◽  
Vol 67 ◽  
pp. 89-96
Author(s):  
Mahboubeh Kargar ◽  
Amir Lohrasebi

The effects of the application of constant electric fields on the dynamics of a confined water droplet between two different surfaces are investigated, by using a molecular dynamics method. It is found that the water molecules responded to the electric field, which partially depends on the wettability of the different surfaces. The results reveal that the application of external electric fields causes to create extra pressure on the surfaces, which are theoretically justified. The induced pressure could be experienced by multilayer nano-filters, which are used in desalination processes, with the aid of an external electric field, and may reduce the water filters shelf life.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1398
Author(s):  
Yong-Qi Zhang ◽  
Xuan Wang ◽  
Ping-Lan Yu ◽  
Wei-Feng Sun

Trimethylolpropane triacrylate (TMPTA) as a photoactive crosslinker is grafted onto hydrophobic nanosilica surface through click chemical reactions of mercapto double bonds to prepare the functionalized nanoparticles (TMPTA-s-SiO2), which are used to develop TMPTA-s-SiO2/XLPE nanocomposites with improvements in mechanical strength and electrical resistance. The expedited aging experiments of water-tree growth are performed with a water-knife electrode and analyzed in consistence with the mechanical performances evaluated by means of dynamic thermo-mechanical analysis (DMA) and tensile stress–strain characteristics. Due to the dense cross-linking network of polyethylene molecular chains formed on the TMPTA-modified surfaces of SiO2 nanofillers, TMPTA-s-SiO2 nanofillers are chemically introduced into XLPE matrix to acquire higher crosslinking degree and connection strength in the amorphous regions between polyethylene lamellae, accounting for the higher water-tree resistance and ameliorated mechanical performances, compared with pure XLPE and neat-SiO2/XLPE nanocomposite. Hydrophilic TMPTA molecules grafted on the nano-SiO2 surface can inhibit the condensation of water molecules into water micro-beads at insulation defects, thus attenuating the damage of water micro-beads to polyethylene configurations under alternating electric fields and thus restricting water-tree growth in amorphous regions. The intensified interfaces between TMPTA-s-SiO2 nanofillers and XLPE matrix limit the segment motions of polyethylene molecular chains and resist the diffusion of water molecules in XLPE amorphous regions, which further contributes to the excellent water-tree resistance of TMPTA-s-SiO2/XLPE nanocomposites.


Author(s):  
Eric Pop

The electron-phonon energy dissipation bottleneck is examined in silicon and carbon nanoscale devices. Monte Carlo simulations of Joule heating are used to investigate the spectrum of phonon emission in bulk and strained silicon. The generated phonon distributions are highly non-uniform in energy and momentum, although they can be approximately grouped into one third acoustic (AC) and two thirds optical phonons (OP) at high electric fields. The phonon dissipation is markedly different in strained silicon at low electric fields, where certain relaxation mechanisms are blocked by scattering selection rules. In very short (∼10 nm) silicon devices, electron and phonon transport is quasi-ballistic, and the heat generation domain is much displaced from the active device region, into the contact electrodes. The electron-phonon bottleneck is more severe in carbon nanotubes, where the optical phonon energy is three times higher than in silicon, and the electron-OP interaction is entirely dominant at high fields. Thus, persistent hot optical phonons are easily generated under Joule heating in single-walled carbon nanotubes suspended between two electrodes, in vacuum. This leads to negative differential conductance at high bias, light emission, and eventual breakdown. Conversely, optical and electrical measurements on such nanotubes can be used to gauge their thermal properties. The hot optical phonon effects appear less pronounced in suspended nanotubes immersed in an ambient gas, suggesting that phonons find relaxation pathways with the vibrational modes of the ambient gas molecules. Finally, hot optical phonons are least pronounced for carbon nanotube devices lying on dielectrics, where the OP modes can couple into the vibrational modes of the substrate. Such measurements and modeling suggest very interesting, non-equilibrium coupling between electrons and phonons in solid-state devices at nanometer length and picoseconds time scales.


2009 ◽  
Vol 80 (7) ◽  
Author(s):  
Felix von Oppen ◽  
Francisco Guinea ◽  
Eros Mariani

Sign in / Sign up

Export Citation Format

Share Document