Autophagy-inhibiting biomimetic nanodrugs enhance photothermal therapy and boost antitumor immunity

2022 ◽  
Author(s):  
Peiying Huang ◽  
Yin Yin Zhu ◽  
Hao Zhong ◽  
Peiling Chen ◽  
Qunying Shi ◽  
...  

The instinctive protective stress responses of tumor cells hamper the low-temperature photothermal therapy (LTPTT), resulting in tumor recurrence and metastasis. The rapid blood clearance and low-efficiency tumor enrichment of nanomedicines...

2021 ◽  
Vol 22 (13) ◽  
pp. 6889
Author(s):  
Tatiana N. Sharapova ◽  
Elena A. Romanova ◽  
Olga K. Ivanova ◽  
Denis V. Yashin ◽  
Lidia P. Sashchenko

The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate immunity receptor expressed on monocytes. The Hsp70–TREM-1 interaction activates expression of TNFα and IFNγ mRNAs in monocytes and stimulates IL-2 secretion by РВМСs. Moreover, incubation of РВМСs with Hsp70 leads to an appearance of cytotoxic lymphocyte subpopulations active against the MHC-negative tumor cells. In addition, both the CD4+ Т-lymphocytes and CD14+ monocytes are necessary for the Hsp70 signal transduction and a consequent activation of the cytotoxic lymphocytes. We believe that data presented in this study will broaden the views on the involvement of Hsp70 in the antitumor immunity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A120-A120
Author(s):  
Sashi Kasimsetty ◽  
Himavanth Gatla ◽  
Dhana Chinnasamy

BackgroundMCY-M11, an anti-mesothelin CAR (Meso-CAR) mRNA transfected PBMC cell product manufactured through <1 day-process is under clinical evaluation for the treatment of advanced ovarian cancer and peritoneal mesothelioma. In this in-vitro study, we characterized the phenotypic and functional status of immune cell populations in MCY-M11 and their possible role in antitumor immunity.MethodsMCY-M11 cell product were generated using unmanipulated healthy donor PBMCs (n=5) by transfection of Meso-CAR mRNA using MaxCyte’s proprietary Flow Electroporation® system. Frozen MCY-M11 cell product was thawed and cultured for 18 hours, then co-cultured with hMSLNneg or hMSLNpos human mesothelioma cell line, MSTO-211H, or stimulated with anti-CD3/anti-CD28 antibodies in vitro for 8 days. Distinct cell populations in MCY-M11 were evaluated for kinetics and duration of CAR expression, differentiation, activation, exhaustion, and their ability to secrete various immunomodulatory molecules during in vitro stimulation. Antigen-specific proliferation and cytotoxicity of MCY-M11 against hMSLNpos tumor cells as well as their ability to mount long-term antitumor immunity through epitope spreading mechanisms were studied.ResultsIndividual cell populations in MCY-M11 exhibited a consistent but transient Meso-CAR expression persisting for about 7 days. Cell subsets in MCY-M11 acquired early signs of activation and differentiation within 18–24 hours post-culture, but only attained full activation and lineage-specific differentiation upon specific response to hMSLNpos tumor cells. hMSLN antigen experienced MCY-M11 retained significant fractions of Naïve and Central Memory T cells and increased percentage of Effector Memory T cells along with increased expression of CD62L, CD27, and chemokine receptors (CCR5, CCR7, and CXCR3). MCY-M11 exhibited strong antigen-specific cytotoxicity against hMSLNpos tumor cells with corresponding increase in activation and proliferation of CD4+ and CD8+ T cell subsets and displayed low or no acquisition of known exhaustion markers. NK cells also exhibited a functionally superior molecular signature exhibiting increased levels of NKG2D, NKp44, NKp46, FAS, and TRAIL. The Monocytes and B cells in MCY-M11 also acquired an activated, differentiated, and mature phenotype, expressing molecules required for antigen presentation (HLA-DR, HLA-ABC, and CD205) and T cell co-stimulation (CD80 and CD86) to mount a strong antitumor response. These phenotypic changes in cell subsets of MCY-M11 transpired with simultaneous secretion of potent immunostimulatory molecules and chemokines facilitating an extended antitumor response through epitope spreading.ConclusionsWe demonstrated that MCY-M11 is a unique cell product possessing a complete built-in immune cellular machinery with favorable phenotype and enhanced functions specialized in mediating an effective and long-term antitumor response.Trial RegistrationNCT03608618


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii18
Author(s):  
Masum Rahman ◽  
Ian E Olson ◽  
Rehan Saber ◽  
Jibo Zhang ◽  
Lucas P Carlstrom ◽  
...  

Abstract BACKGROUND Glioblastoma is a fatal infiltrative primary brain tumor, and standard care includes maximal safe surgical resection followed by radiation and Temozolomide (TMZ). Therapy-resistant residual cells persist in a latent state a long time before inevitable recurrence. Conventional radiation and Temozolomide (TMZ) treatment cause oxidative stress and DNA damage resulting senescent-like state of cell-cycle arrest. However, increasing evidence demonstrates escaping senescence leads to tumor recurrence. Thus, the ablation of senescent tumor cells after chemoradiation may be an avenue to limit tumor recurrence. METHODS 100uM TMZ for 7days or 10-20Gy radiation (cesium gamma radiator) was used for senescence induction in human glioblastoma in vitro and confirmed by SA-Beta gal staining and PCR. Replication arrest assessed by automated quantification of cellular confluence (Thermo Scientific Series 8000 WJ Incubator). We evaluated the IC50 for several senolytics targeting multiple SCAPs, including Dasatinib, Quercetin, AMG-232, Fisetin, Onalespib, Navitoclax, and A1331852, and in senescent vs. proliferating cells. RESULTS Among the senolytic tested, the Bcl-XL inhibitors A1331852 and Navitoclax both shown senolytic effect by selectively killing radiated, senescent tumor cells at lower concentrations as compared to 0Gy treated non-senescent cells. Across 12 GBM cell lines, IC50 for senescent cells was 6–500 times lower than non-senescent GBM(p&lt; 0.005). Such differential sensitivity to Bcl-XL inhibition after radiation has also observed by BCL-XL knockdown in radiated glioma. CONCLUSION These findings suggest the potential to harness radiation-induced biology to ablate surviving quiescent cells and demonstrate Bcl-XL dependency as a potential vulnerability of surviving tumor cells after exposure to chemoradiation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen Abernathy ◽  
Jeremy Burke

Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.


2004 ◽  
Vol 34 (3) ◽  
pp. 209-219 ◽  
Author(s):  
Chikage Obata ◽  
Manxin Zhang ◽  
Yoichi Moroi ◽  
Hajime Hisaeda ◽  
Keiji Tanaka ◽  
...  

2021 ◽  
Author(s):  
Dan Peng ◽  
Genhua Liu ◽  
Ye He ◽  
Pengfei Gao ◽  
Shuangquan Gou ◽  
...  

Recently, photothermal therapy (PTT) has been recognized as a viable alternative strategy against bacterial biofilm infection. However, hyperthermia required for PTT to ablate biofilm usually induced damage of normal tissue/organ...


2021 ◽  
Author(s):  
Jie Li ◽  
Wenxi Li ◽  
Lisi Xie ◽  
Wei Sang ◽  
Guohao Wang ◽  
...  

Photothermal therapy (PTT) achieves substantive therapeutic progress in certain tumor types without exogenous agents but is hampered by the over-activated inflammatory response or tumor recurrence in some cases. Herein, we...


2009 ◽  
Vol 8 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Gunes Esendagli ◽  
Hande Canpinar ◽  
Guldal Yilmaz ◽  
Aysen Gunel-Ozcan ◽  
M. Oguz Guc ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3952 ◽  
Author(s):  
Maria Mrakovcic ◽  
Lauren Bohner ◽  
Marcel Hanisch ◽  
Leopold F. Fröhlich

Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.


Sign in / Sign up

Export Citation Format

Share Document