γ-Valerolactone-Introduced Controlled-Isomerization of Glucose for Lactic Acid Production over Sn-Beta Catalyst

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...

2020 ◽  
Vol 22 (9) ◽  
pp. 5249-5254 ◽  
Author(s):  
Yuting Liu ◽  
Xiaofang Su ◽  
Wei Guan ◽  
Likai Yan

In this work, the mechanism of water oxidation catalyzed by an Ru-based complex [Ru(L)]+ (L = 5,5-chelated 2-carboxy-phen, 2,2′;6′,2′′-terpyridine) was studied by density functional theory (DFT) calculations.


2015 ◽  
Vol 13 (45) ◽  
pp. 10981-10985 ◽  
Author(s):  
Manjaly J. Ajitha ◽  
Kuo-Wei Huang

The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X).


2016 ◽  
Vol 3 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Sai V. C. Vummaleti ◽  
Giovanni Talarico ◽  
Steven P. Nolan ◽  
Luigi Cavallo ◽  
Albert Poater

A comparison between different M–C bonds (M = Cu(i), Ni(ii), Co(i), Rh(i) and Ir(i)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes.


2020 ◽  
Vol 22 (41) ◽  
pp. 23869-23877
Author(s):  
Yan Li ◽  
Ning Liu ◽  
Chengna Dai ◽  
Ruinian Xu ◽  
Bin Wu ◽  
...  

Present work investigates the kinetic role of H2 during Ni surface diffusion and deposition to generate branched Ni nanostructures by employing density functional theory (DFT) calculations and ab initio molecule dynamic (AIMD) simulations.


Nanoscale ◽  
2020 ◽  
Vol 12 (44) ◽  
pp. 22768-22777
Author(s):  
Ilaria Barlocco ◽  
Sofia Capelli ◽  
Xiuyuan Lu ◽  
Simone Tumiati ◽  
Nikolaos Dimitratos ◽  
...  

A combination of experiments and Density functional theory (DFT) calculations demonstrated that the single vacancies present on the graphitic layers are the only active sites for FA dehydrogenation.


2017 ◽  
Vol 14 (4) ◽  
pp. 243 ◽  
Author(s):  
Van Liem-Nguyen ◽  
Ulf Skyllberg ◽  
Kwangho Nam ◽  
Erik Björn

Environmental contextThe chemical speciation of mercury (Hg) largely controls its biogeochemical cycling and exposure to biota. Here, we investigate the thermodynamic stabilities of complexes formed between inorganic divalent Hg (HgII) and 15 biogeochemically relevant low-molecular-mass (LMM) thiol ligands. This information is critical for accurate modelling of the chemical speciation of HgII and to clarify the role of HgII–LMM thiol complexes in the cycling of Hg in the environment. AbstractInorganic divalent mercury (HgII) has a very high affinity for reduced sulfur functional groups. Reports from laboratory experiments suggest that HgII complexes with specific low-molecular-mass (LMM) thiol (RSH) ligands control rates of HgII transformation reactions. Because of methodological limitations for precise determination of the highly stable HgII complexes with LMM thiol ligands, constants reported in the literature remain inconsistent. This uncertainty impedes accurate modelling of the chemical speciation of HgII and the possibility to elucidate the role of HgII complexes with LMM thiols for Hg transformation reactions. Here, we report values of thermodynamic stability constants for 15 monodentate, two-coordinated HgII complexes, Hg(SR)2, formed with biogeochemically relevant LMM thiol ligands. The constants were determined by a two-step ligand-exchange procedure where the specific Hg(SR)2 complexes were quantified by liquid chromatography–inductively coupled plasma mass spectrometry. Thermodynamic stability constants (log β2) determined for the Hg(SR)2 complexes ranged from 34.6, N-cysteinylglycine, to 42.1, 3-mercaptopropionic acid, for the general reaction Hg2++2RS– ⇌ Hg(SR)2. Density functional theory (DFT) calculations showed that electron-donating carboxyl and carbonyl groups have a stabilising effect on the HgII–LMM thiol complexes, whereas electron-withdrawing protonated primary amino groups have a destabilising effect. Experimental results and DFT calculations demonstrated that the presence of such functional groups in the vicinity of the RSH group caused significant differences in the stability of Hg(SR)2 complexes. These differences are expected to be important for the chemical speciation of HgII and its transformation reactions in environments where a multitude of LMM thiol compounds are present.


Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.


Sign in / Sign up

Export Citation Format

Share Document