Covalent Sortase A Inhibitor ML346 Prevents Staphylococcus aureus Infection of Galleria mellonella

2021 ◽  
Author(s):  
Xiang-Na Guan ◽  
Tao Zhang ◽  
Teng Yang ◽  
Ze Dong ◽  
Song Yang ◽  
...  

The housekeeping sortase A (SrtA), a membrane-associated cysteine transpeptidase, is responsible for anchoring surface proteins to the cell wall peptidoglycan in Gram-positive bacteria. This process is essential for the regulation...

2004 ◽  
Vol 72 (5) ◽  
pp. 2710-2722 ◽  
Author(s):  
David Comfort ◽  
Robert T. Clubb

ABSTRACT Surface proteins in gram-positive bacteria are frequently required for virulence, and many are attached to the cell wall by sortase enzymes. Bacteria frequently encode more than one sortase enzyme and an even larger number of potential sortase substrates that possess an LPXTG-type cell wall sorting signal. In order to elucidate the sorting pathways present in gram-positive bacteria, we performed a comparative analysis of 72 sequenced microbial genomes. We show that sortase enzymes can be partitioned into five distinct subfamilies based upon their primary sequences and that most of their substrates can be predicted by making a few conservative assumptions. Most bacteria encode sortases from two or more subfamilies, which are predicted to function nonredundantly in sorting proteins to the cell surface. Only ∼20% of sortase-related proteins are most closely related to the well-characterized Staphylococcus aureus SrtA protein, but nonetheless, these proteins are responsible for anchoring the majority of surface proteins in gram-positive bacteria. In contrast, most sortase-like proteins are predicted to play a more specialized role, with each anchoring far fewer proteins that contain unusual sequence motifs. The functional sortase-substrate linkage predictions are available online (http://www.doe-mbi.ucla.edu/Services/Sortase/ ) in a searchable database.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 23
Author(s):  
Maria Valeria Raimondi ◽  
Roberta Listro ◽  
Maria Grazia Cusimano ◽  
Mery La Franca ◽  
Teresa Faddetta ◽  
...  

Sortase A (SrtA) is a membrane enzyme responsible for the covalent anchoring of surface proteins on the cell wall of Gram-positive bacteria. [...]


2005 ◽  
Vol 4 (3) ◽  
pp. 259-276 ◽  
Author(s):  
Brian Wilkinson ◽  
Arunachalam Muthaiyan ◽  
Radheshyam Jayaswal

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 641 ◽  
Author(s):  
Seemi Tasnim Alam ◽  
Tram Anh Ngoc Le ◽  
Jin-Soo Park ◽  
Hak Cheol Kwon ◽  
Kyungsu Kang

Bacterial antibiotic resistance is an alarming global issue that requires alternative antimicrobial methods to which there is no resistance. Antimicrobial photodynamic therapy (APDT) is a well-known method to combat this problem for many pathogens, especially Gram-positive bacteria and fungi. Hypericin and orange light APDT efficiently kill Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and the yeast Candida albicans. Although Gram-positive bacteria and many fungi are readily killed with APDT, Gram-negative bacteria are difficult to kill due to their different cell wall structures. Pseudomonas aeruginosa is one of the most important opportunistic, life-threatening Gram-negative pathogens. However, it cannot be killed successfully by hypericin and orange light APDT. P. aeruginosa is ampicillin resistant, but we hypothesized that ampicillin could still damage the cell wall, which can promote photosensitizer uptake into Gram-negative cells. Using hypericin and ampicillin cotreatment followed by orange light, a significant reduction (3.4 log) in P. aeruginosa PAO1 was achieved. P. aeruginosa PAO1 inactivation and gut permeability improvement by APDT were successfully shown in a Caenorhabditis elegans model.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara D. Siegel ◽  
Brendan R. Amer ◽  
Chenggang Wu ◽  
Michael R. Sawaya ◽  
Jason E. Gosschalk ◽  
...  

ABSTRACT The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium Actinomyces oris, an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA. Here we show by X-ray crystallography that LcpA adopts an α-β-α structural fold, akin to the conserved LCP domain, which harbors characteristic catalytic arginine residues. Consistently, alanine substitution for these residues, R149 and R266, abrogates GspA glycosylation, leading to accumulation of an intermediate form termed GspALMM, which is also observed in the lcpA mutant. Unlike other LCP proteins characterized to date, LcpA contains a stabilizing disulfide bond, mutations of which severely affect LcpA stability. In line with the established role of disulfide bond formation in oxidative protein folding in A. oris, deletion of vkor, coding for the thiol-disulfide oxidoreductase VKOR, also significantly reduces LcpA stability. Biochemical studies demonstrated that the recombinant LcpA enzyme possesses pyrophosphatase activity, enabling hydrolysis of diphosphate bonds. Furthermore, this recombinant enzyme, which weakly interacts with GspA in solution, catalyzes phosphotransfer to GspALMM. Altogether, the findings support that A. oris LcpA is an archetypal LCP enzyme that glycosylates a cell wall-anchored protein, a process that may be conserved in Actinobacteria, given the conservation of LcpA and GspA in these high-GC-content organisms. IMPORTANCE In Gram-positive bacteria, the conserved LCP family enzymes studied to date are known to attach glycopolymers, including wall teichoic acid, to the cell envelope. It is unknown if these enzymes catalyze glycosylation of surface proteins. We show here in the actinobacterium Actinomyces oris by X-ray crystallography and biochemical analyses that A. oris LcpA is an LCP homolog, possessing pyrophosphatase and phosphotransferase activities known to belong to LCP enzymes that require conserved catalytic Arg residues, while harboring a unique disulfide bond critical for protein stability. Importantly, LcpA mediates glycosylation of the surface protein GspA via phosphotransferase activity. Our studies provide the first experimental evidence of an archetypal LCP enzyme that promotes glycosylation of a cell wall-anchored protein in Gram-positive bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Wang ◽  
Qianxue Li ◽  
Jiaxin Li ◽  
Shisong Jing ◽  
Yajing Jin ◽  
...  

New anti-infective approaches are urgently needed to control multidrug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Sortase A (SrtA) is a membrane-bound cysteine transpeptidase that plays an essential role in the catalysis of covalent anchoring of surface proteins to the cell wall of Staphylococcus aureus (S. aureus). The present study reports identification of a flavonoid, eriodictyol, as a reversible inhibitor of SrtA with an IC50 of 2.229 ± 0.014 μg/mL that can be used as an innovative means to counter both resistance and virulence. The data indicated that eriodictyol inhibited the adhesion of the bacteria to fibrinogen and reduced the formation of biofilms and anchoring of staphylococcal protein A (SpA) on the cell wall. The results of fluorescence quenching experiments demonstrated a strong interaction between eriodictyol and SrtA. Subsequent mechanistic studies revealed that eriodictyol binds to SrtA by interacting with R197 amino acid residue. Importantly, eriodictyol reduced the adhesion-dependent invasion of A549 cells by S. aureus and showed a good therapeutic effect in a model of mouse pneumonia induced by S. aureus. Overall, the results indicated that eriodictyol can attenuate MRSA virulence and prevent the development of resistance by inhibiting SrtA, suggesting that eriodictyol may be a promising lead compound for the control of MRSA infections.


1999 ◽  
Vol 43 (9) ◽  
pp. 2314-2316 ◽  
Author(s):  
Arnold H. Horwitz ◽  
Robert E. Williams ◽  
Pei-Syan Liu ◽  
Rossana Nadell

ABSTRACT Bactericidal/permeability-increasing protein (BPI) inhibited growth of cell wall-deficient Acholeplasma laidlawii and L forms of certain strains of Staphylococcus aureus andStreptococcus pyogenes. However, the same strains ofS. aureus and S. pyogenes with intact cell walls were not susceptible to the growth-inhibitory effects of BPI.


2012 ◽  
Vol 367 (1592) ◽  
pp. 1123-1139 ◽  
Author(s):  
Olaf Schneewind ◽  
Dominique M. Missiakas

The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.


2004 ◽  
Vol 186 (7) ◽  
pp. 1972-1982 ◽  
Author(s):  
Hélène Bierne ◽  
Caroline Garandeau ◽  
M. Graciela Pucciarelli ◽  
Christophe Sabet ◽  
Salete Newton ◽  
...  

ABSTRACT Sortases are transamidases that covalently link proteins to the peptidoglycan of gram-positive bacteria. The genome of the pathogenic bacterium Listeria monocytogenes encodes two sortases genes, srtA and srtB. The srtA gene product anchors internalin and some other LPXTG-containing proteins to the listerial surface. Here, we focus on the role of the second sortase, SrtB. Whereas SrtA acts on most of the proteins in the peptidoglycan fraction, SrtB appears to target minor amounts of surface polypeptides. We identified one of the SrtB-anchored proteins as the virulence factor SvpA, a surface-exposed protein which does not contain the LPXTG motif. Therefore, as in Staphylococcus aureus, the listerial SrtB represents a second class of sortase in L. monocytogenes, involved in the attachment of a subset of proteins to the cell wall, most likely by recognizing an NXZTN sorting motif. The ΔsrtB mutant strain does not have defects in bacterial entry, growth, or motility in tissue-cultured cells and does not show attenuated virulence in mice. SrtB-mediated anchoring could therefore be required to anchor surface proteins involved in the adaptation of this microorganism to different environmental conditions.


2015 ◽  
Vol 51 (52) ◽  
pp. 10483-10485 ◽  
Author(s):  
Daynea J. Wallock-Richards ◽  
Jon Marles-Wright ◽  
David J. Clarke ◽  
Amarnath Maitra ◽  
Michael Dodds ◽  
...  

Sortase A (SrtA) from Gram positive pathogens is an attractive target for inhibitors due to its role in the attachment of surface proteins to the cell wall.


Sign in / Sign up

Export Citation Format

Share Document