A mild reduction of Co-doped MnO2 to create abundant oxygen vacancies and active sites for enhanced Oxygen Evolution Reaction

Nanoscale ◽  
2021 ◽  
Author(s):  
Jincan Jia ◽  
Lei Li ◽  
Xiao Lian ◽  
Mingzai Wu ◽  
Fangcai Zheng ◽  
...  

Efficient and non-precious metal-based catalysts (e.g., manganese-based oxides) for the oxygen evolution reaction (OER) still remains a huge challenge. It is rarely reported to create the oxygen vacancies of manganese-based...

Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


2020 ◽  
Vol 4 (5) ◽  
pp. 1390-1396 ◽  
Author(s):  
Beibei Guo ◽  
Ruguang Ma ◽  
Zichuang Li ◽  
Jun Luo ◽  
Minghui Yang ◽  
...  

Ru and Ni co-doped Co3O4 with improved OER activity were synthesized by a one-step hydrothermal method. Ru doping increases the intrinsic activity, while Ni doping creates more oxygen vacancies and exposes more active sites.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jiabiao Yan ◽  
Mingkun Xia ◽  
Chenguang Zhu ◽  
Dawei Chen ◽  
Fanglin Du

Perovskite oxides have been established as a promising kind of catalyst for alkaline oxygen evolution reactions (OER), because of their regulated non-precious metal components. However, the surface lattice is amorphous during the reaction, which gradually decreases the intrinsic activity and stability of catalysts. Herein, the precisely control tungsten atoms substituted perovskite oxides (Pr0.5Ba0.5Co1-xWxO3-δ) nanowires were developed by electrostatic spinning. The activity and Tafel slope were both dependent on the W content in a volcano-like fashion, and the optimized Pr0.5Ba0.5Co0.8W0.2O3-δ exhibits both excellent activity and superior stability compared with other reported perovskite oxides. Due to the outermost vacant orbitals of W6+, the electronic structure of cobalt sites could be efficiently optimized. Meanwhile, the stronger W-O bond could also significantly improve the stability of latticed oxide atoms to impede the generation of surface amorphous layers, which shows good application value in alkaline water splitting.


Author(s):  
Min Jiang ◽  
Wei Fan ◽  
Anquan Zhu ◽  
Pengfei Tan ◽  
Jianping Xie ◽  
...  

This work employs bacteria as precursors and induces a cost-effective biosorption strategy to obtain Fe2P@carbon nanoparticles decorated on N and P co-doped carbon (Fe2P@CNPs/NPC) materials.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Xinheng Li ◽  
Lei Qi ◽  
Mei Wang

Transition metal oxide/ hydroxide is intensively studied for oxygen evolution reaction (OER). Herein, graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies via hydrothermal treatment is reported. With the increase...


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


Nanoscale ◽  
2021 ◽  
Author(s):  
Ya-Nan Zhou ◽  
Ruo-Yao Fan ◽  
Yu-Ning Cao ◽  
Hui-Ying Wang ◽  
Bin Dong ◽  
...  

The oriental distribution and strong conjunction of Fe active sites in multiple metals hydroxides are very crucial to modulate the activity and stability for efficient oxygen evolution reaction (OER). Whereas,...


Sign in / Sign up

Export Citation Format

Share Document