Direct Synthesis β-Acyloxy Aldehydes from Linear Allylic Esters Using O2 as Sole Oxidant

Author(s):  
Shu-Hui Lei ◽  
Ya Zhong ◽  
Xian-Peng Cai ◽  
Qing Huang ◽  
Jian-Ping Qu ◽  
...  

A simple and practical preparation of β-O substituted aldehydes directly from linear allylic esters is developed. Using bis(benzonitrile)palladium chloride as the catalyst and O2 as sole oxidant, the tandem isomerization-...

2021 ◽  
Author(s):  
Shu-Hui Lei ◽  
Ya Zhong ◽  
Xian-Peng Cai ◽  
Qing Huang ◽  
Jian-Ping Qu ◽  
...  

2019 ◽  
Vol 16 (7) ◽  
pp. 808-817 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background: In spite of the availability of various treatment approaches including surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects associated with currently available anti-breast cancer agents, there is emergent requirement to develop target-specific AIs with safer anti-breast cancer profile. Methods: It is challenging task to design target-specific and less toxic SAIs, though the molecular modeling tools viz. molecular docking simulations and QSAR have been continuing for more than two decades for the fast and efficient designing of novel, selective, potent and safe molecules against various biological targets to fight the number of dreaded diseases/disorders. In order to design novel and selective SAIs, structure guided molecular docking assisted alignment dependent 3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal scaffold with wide range of aromatase inhibitory activity. Results: 3D-QSAR model developed using molecular weighted (MW) extent alignment approach showed good statistical quality and predictive ability when compared to model developed using moments of inertia (MI) alignment approach. Conclusion: The explored binding interactions and generated pharmacophoric features (steric and electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and development of new potential safer SAIs, that can be effective to reduce the mortality and morbidity associated with breast cancer.


2020 ◽  
Vol 7 (2) ◽  
pp. 226-238
Author(s):  
Petro P. Ony`sko ◽  
Tetyana I. Chudakova ◽  
Vladimir V. Pirozhenko ◽  
Alexandr B. Rozhenko

The potentialities of condensation of α-ketophosphonates with primary amines for direct synthesis of α-iminophosphonates have been revealed. Diesters of α-ketophosphonic acids react with the primary amines by two competitive pathways: with a formation of α-iminophosphonates or a C-P bond cleavage resulting in a hydrogen phosphonate and an acylated amine. In many cases, the latter undesirable pathway is dominant, especially for more nucleophilic alkyl amines. Using metallic salts of α-ketophosphonates avoids the C-P bond cleavage, allowing direct preparation of α-phosphorylated imines by the reaction with primary amines. This strategy provides an atom economy single-stage synthesis of iminophosphonates – precursors of bio relevant phosphorus analogs of α-amino acids. Methyl sodium iminophosphonates, bearing aryl or heteryl substituents at the imino carbon atom exist in solutions at room temperature as an equilibrium mixture of Z- and E-isomers. A configuration of the C=N bond can be controlled by the solvent: changing the aprotic dipolar solvent DMSO-d6 by water or alcohols leads to the change from a predominant Z-isomer to almost an exclusive E-form. In contrast, diesters of the respective iminophosphonates exist in non-protic solvents predominantly in Econfiguration. The solvent effect on E-Z stereochemistry is demonstrated by DFT calculations.


2021 ◽  
Author(s):  
Chandan Chaudhari ◽  
Katsutoshi Sato ◽  
Yasuyuki Ikeda ◽  
Kenji Terada ◽  
Naoya Abe ◽  
...  

The direct synthesis of cyclohexylamine via hydrogenation of nitrobenzene over monometallic (Pd, Ru or Rh) and bimetallic (PdxRu1−x) catalysts was studied.


Author(s):  
Sergei Voitekhovich ◽  
Alexander Lyakhov ◽  
Ludmila Ivashkevich ◽  
Alexander Lavrov ◽  
Ludmila Lavrenova ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Byung Chul Yeo ◽  
Hyunji Nam ◽  
Hyobin Nam ◽  
Min-Cheol Kim ◽  
Hong Woo Lee ◽  
...  

AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.


Sign in / Sign up

Export Citation Format

Share Document