scholarly journals Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning

RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15688-15694
Author(s):  
Yaoyao Li ◽  
Yao Lu ◽  
Xiaomin Huo ◽  
Dong Wei ◽  
Juan Meng ◽  
...  

Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable perovskite solar cells and color tunable stable perovskite light-emitting diodes.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


Author(s):  
Kyung-Geun Lim ◽  
Tae-Hee Han ◽  
Tae-Woo Lee

Organic-inorganic hybrid metal halide perovskites have excellent optoelectronic properties and are soft and resilient; therefore, they are appropriate for use in flexible and stretchable electronic devices. Commercialization of these perovskite...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dexin Yang ◽  
Guoling Zhang ◽  
Runchen Lai ◽  
Yao Cheng ◽  
Yaxiao Lian ◽  
...  

AbstractReducing environmental impact is a key challenge for perovskite optoelectronics, as most high-performance devices are based on potentially toxic lead-halide perovskites. For photovoltaic solar cells, tin-lead (Sn–Pb) perovskite materials provide a promising solution for reducing toxicity. However, Sn–Pb perovskites typically exhibit low luminescence efficiencies, and are not ideal for light-emitting applications. Here we demonstrate highly luminescent germanium-lead (Ge–Pb) perovskite films with photoluminescence quantum efficiencies (PLQEs) of up to ~71%, showing a considerable relative improvement of ~34% over similarly prepared Ge-free, Pb-based perovskite films. In our initial demonstration of Ge–Pb perovskite LEDs, we achieve external quantum efficiencies (EQEs) of up to ~13.1% at high brightness (~1900 cd m−2), a step forward for reduced-toxicity perovskite LEDs. Our findings offer a new solution for developing eco-friendly light-emitting technologies based on perovskite semiconductors.


Author(s):  
Jiyu Tian ◽  
David B. Cordes ◽  
Alexandra M. Z. Slawin ◽  
Eli Zysman-Colman ◽  
Finlay D. Morrison

2016 ◽  
Vol 2 (10) ◽  
pp. e1601156 ◽  
Author(s):  
M. Ibrahim Dar ◽  
Gwénolé Jacopin ◽  
Simone Meloni ◽  
Alessandro Mattoni ◽  
Neha Arora ◽  
...  

Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (<100 K) photoluminescence of CH3NH3PbI3and CH3NH3PbBr3reveals two distinct emission peaks, whereas that of CH(NH2)2PbBr3shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.


Author(s):  
Yao Li ◽  
Kaimin Du ◽  
Manli Zhang ◽  
Xuan Gao ◽  
Yu Lu ◽  
...  

Metal halide perovskites are a new class of promising materials in optoelectronic applications. As optoelectronic properties of the lead halide perovskites are determined largely by their morphology, the morphology of...


2015 ◽  
Vol 1776 ◽  
pp. 19-29 ◽  
Author(s):  
Dakota Junkman ◽  
Dayton J. Vogel ◽  
Yulun Han ◽  
Dmitri S. Kilin

ABSTRACTToday’s conversion of solar energy into electricity is based on silicon, which is pure, eventually crystalline, and its most efficient transitions are away from solar radiation maximum. The continuous search of efficient photovoltaic materials has recently focused on lead-halide organic-inorganic perovskite materials due to the very flexible, sustainable, and forgiving procedure of their fabrication, which is successful even if the concentrations of precursors, and temperature regimes deviate from optimal values. In addition to simple fabrication, this class of materials provides impressively high efficiency of photovoltaic (PV) cells. Attention to these materials helps to understand the mechanisms of their high efficiencies and to identify other materials with same type of properties. This work presents computational analysis of photo-induced processes in perovskite materials at ambient temperatures.


2021 ◽  
Vol 257 ◽  
pp. 03066
Author(s):  
Dongyang Shen ◽  
Chengzhao Luo ◽  
Ronghong Zheng ◽  
Qinyi Li ◽  
Yu Chen

Metal halide perovskites have received much attention for their application in light-emitting diodes (LEDs) and solar cells in the past several years. Among them, 2D and quasi-2D perovskite with organic long-chain cations introduced have drawn significant attention. However, while improving wet and thermal stability, as the grain size becomes smaller, more defects introduced at the grain boundary and surface, resulting in the increase of non-radiative recombination is becoming the main problem which should be faced by 2D/quasi-2D perovskite materials. Here, we report a new strategy employing ionic liquid named 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMB).By adding a small amount of ionic liquid to the precursor, the defect was effectively passivated and the photoluminescence intensity was increased by 11 times and the fluorescent lifetime was increased by about 1.5 times. The flatness of the prepared perovskite thin films has also been effectively improved.


Sign in / Sign up

Export Citation Format

Share Document