scholarly journals Theoretical investigation on the effect of the ligand on bis-silylation of C(sp)–C(sp) by Ni complexes

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1005-1010
Author(s):  
Li Hui ◽  
He Yuhan ◽  
Wang Jiaqi

Density functional theory (DFT) is used to study the bis-silylation of alkynes catalyzed by a transition metal nickel–organic complex; the active catalyst, the organic ligand, the reaction mechanism, and rate-determining step are discussed in this paper.

2010 ◽  
Vol 09 (supp01) ◽  
pp. 99-107
Author(s):  
LINGJUN LIU ◽  
SIWEI BI ◽  
MIN SUN ◽  
XIANGAI YUAN ◽  
PING LI

The mechanistic study on the oxidation of 2-propanol by the model complex CpIr [κ2-(N,C)-( NHCMe2–2-C6H4)] (R) is performed using density functional theory (DFT) calculations. It is found that the rate-determining step is the hydrogen migration from 2-propanol to R via a six-membered transition state. The reaction is calculated to be favorable thermodynamically. To further understand the reaction mechanism, some bonding features are discussed, such as the correlation of the geometry of R and the Ir–N π bond involved, the transformation of the nitrogen hybridization, the variation of Ir–N bond distance, and so on.


RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11385-11395
Author(s):  
Wenjie Qi ◽  
Zehao Huang ◽  
Zheming Chen ◽  
Lijuan Fu ◽  
Zhigang Zhang

Density functional theory and measurements of rate are used to provide evidence for the rate determining step and requirements of the active site for CH4 combustion on Pd–Pt bimetallic catalysts in five different distinct kinetic regimes.


2020 ◽  
Vol 11 (4) ◽  
pp. 342-350
Author(s):  
Toyese Oyegoke ◽  
Fadimatu Nyako Dabai ◽  
Adamu Uzairu ◽  
Baba El-Yakubu Jibril

A preliminary study to provides insight into the kinetic and thermodynamic assessment of the reaction mechanism involved in the non-oxidative dehydrogenation (NOD) of propane to propylene over Cr2O3, using a density functional theory (DFT) approach, has been undertaken. The result obtained from the study presents the number of steps involved in the reaction and their thermodynamic conditions across different routes. The rate-determining step (RDS) and a feasible reaction pathway to promote propylene production were also identified. The results obtained from the study of the 6-steps reaction mechanism for dehydrogenation of propane into propylene identified the first hydrogen abstraction and hydrogen desorption to be endothermic. In contrast, other steps that include propane’s adsorption, hydrogen diffusion, and the second stage of hydrogen abstraction were identified as exothermic. The study of different reaction routes presented in the energy profiles confirms the Cr-O (S1, that is, the reaction pathway that activates the propane across the Cr-O site at the alpha or the terminal carbon of the propane) pathway to be the thermodynamically feasible pathway for the production of propylene. The first hydrogen abstraction step was identified as the potential rate-determining step for defining the rate of the propane dehydrogenation process. This study also unveils that the significant participation of Cr sites in the propane dehydrogenation process and how the Cr high surface concentration would hinder the desorption of propylene and thereby promote the production of undesired products due to the stronger affinity that exists between the propylene and Cr-Cr site, which makes it more stable on the surface. These findings thereby result in Cr-site substitution suggestion to prevent deep dehydrogenation in propane conversion to propylene. This insight would aid in improving the catalyst performance.


2021 ◽  
Vol 23 (14) ◽  
pp. 8739-8751
Author(s):  
Priscilla Felício-Sousa ◽  
Karla F. Andriani ◽  
Juarez L. F. Da Silva

Here, we report a theoretical investigation, based on density functional theory, into the role of the d-states occupation on the adsorption properties of CH4, CO, H2 and CH3OH on 3d 13-atom transition-metal (TM13) clusters (TM = Fe, Co, Ni, Cu).


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18246-18251
Author(s):  
Selçuk Eşsiz

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].


2021 ◽  
Vol 197 ◽  
pp. 110613
Author(s):  
Ijeoma Cynthia Onyia ◽  
Stella Ogochukwu Ezeonu ◽  
Dmitri Bessarabov ◽  
Kingsley Onyebuchi Obodo

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3174-3182
Author(s):  
Siwei Yang ◽  
Chaoyu Zhao ◽  
Ruxin Qu ◽  
Yaxuan Cheng ◽  
Huiling Liu ◽  
...  

In this study, a novel type oxygen reduction reaction (ORR) electrocatalyst is explored using density functional theory (DFT); the catalyst consists of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe, Co, and Ni).


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


Sign in / Sign up

Export Citation Format

Share Document