Research progress on interfaces of solid-state lithium-metal batteries

Author(s):  
Yanyun Sun ◽  
Feng Li ◽  
Peiyu Hou

Solid-state lithium-metal batteries (SSLMBs) with the advantages of brilliant safety, superior energy density and thermal stability are regarded as one of the most promising energy storage devices. However, intrinsic defects...

Physchem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-44
Author(s):  
Chiara Ferrara ◽  
Riccardo Ruffo ◽  
Piercarlo Mustarelli

Extended interphases are playing an increasingly important role in electrochemical energy storage devices and, in particular, in lithium-ion and lithium metal batteries. With this in mind we initially address the differences between the concepts of interface and interphase. After that, we discuss in detail the mechanisms of solid electrolyte interphase (SEI) formation in Li-ion batteries. Then, we analyze the methods for interphase characterization, with emphasis put on in-situ and operando approaches. Finally, we look at the near future by addressing the issues underlying the lithium metal/electrolyte interface, and the emerging role played by the cathode electrolyte interphase when high voltage materials are employed.


Author(s):  
Teerth Brahmbhatt ◽  
◽  
Guang Yang ◽  
Ethan Self ◽  
Jagjit Nanda ◽  
...  

All-solid-state batteries are a candidate for next-generation energy-storage devices due to potential improvements in energy density and safety compared to current battery technologies. Due to their high ionic conductivity and potential scalability through slurry processing routes, sulfide solid-state electrolytes are promising to replace traditional liquid electrolytes and enable All-solid-state batteries, but stability of cathode-sulfide solid-state electrolytes interfaces requires further improvement. Herein we review common issues encountered at cathode-sulfide SE interfaces and strategies to alleviate these issues.


2019 ◽  
Vol 7 (29) ◽  
pp. 17581-17593 ◽  
Author(s):  
Zhiqian Cao ◽  
Haibo Hu ◽  
Mingzai Wu ◽  
Kun Tang ◽  
Tongtong Jiang

Planar all-solid-state rechargeable Zn–air batteries with superior energy efficiency demonstrate a novel design for compact all-solid-state rechargeable ZABs towards next-generation wearable energy storage devices with high energy density and safety.


2019 ◽  
Vol 7 (16) ◽  
pp. 9748-9760 ◽  
Author(s):  
Linchun He ◽  
Chao Chen ◽  
Masashi Kotobuki ◽  
Feng Zheng ◽  
Henghui Zhou ◽  
...  

All-solid-state Li-ion batteries (ASSLiB) have been considered to be the next generation energy storage devices that can overcome safety issues and increase the energy density by replacing the organic electrolyte with inflammable solid electrolyte.


Author(s):  
Hui Zhang ◽  
Yabing Qi

Lithium metal batteries are the promising candidates for meeting the increasing demand of next-generation energy storage devices with high energy density, however, the problems of lithium dendrite and unstable solid...


2021 ◽  
Vol 289 ◽  
pp. 116734 ◽  
Author(s):  
Feng Wang ◽  
Lin Zhang ◽  
Qian Zhang ◽  
Jinjiang Yang ◽  
Gaigai Duan ◽  
...  

Author(s):  
Chandra Chowdhury ◽  
Pranab Gain ◽  
Ayan Datta

Utilization of multivalent ions such as Ca(II), Mg(II), Al(III) in the energy storage devices opens up new opportunities to store energy density in a more efficient manner rather than monovalent...


Author(s):  
Mingrui Liu ◽  
Jing Li ◽  
Bing Chi ◽  
Long Zheng ◽  
Yuexing Zhang ◽  
...  

The Li-O2 battery is recognized as one of the most promising energy storage devices for next-generation automotive batteries due to its extremely high theoretical energy density. The design and preparation...


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


Sign in / Sign up

Export Citation Format

Share Document