The co-ordination of small molecules by manganese(II) phosphine complexes. Part 8. Irreversible oxidation of trimethylphosphinemanganese(II) dihalides, [MnX2(PMe3)](X = Cl, Br, or I), to bis(trimethylphosphine)manganese(III) trihalides, [MnX3(PMe3)2]. X-Ray crystal structure of trans-tri-iodobis-(trimethylphosphine)manganese(III), the first example of a trigonal-bipyramidal manganese(III) tertiary phosphine complex

Author(s):  
Brian Beagley ◽  
Charles A. McAuliffe ◽  
Karl Minten ◽  
Robin G. Pritchard
1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


Author(s):  
Stephanie J. Hong ◽  
Jun Li ◽  
Mas A. Subramanian

The crystal structure of magnesium zinc divanadate, MgZnV2O7, was determined and refined from laboratory X-ray powder diffraction data. The title compound was synthesized by a solid-state reaction at 1023 K in air. The crystal structure is isotypic with Mn0.6Zn1.4V2O7 (C2/m; Z = 6) and is related to the crystal structure of thortveitite. The asymmetric unit contains two metal sites with statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1. One (Mg/Zn) metal site (M1) is located on Wyckoff position 8j and the other (M2) on 4h. Three V sites (all on 4i), and eight O (three 8j, four 4i, and one 2b) sites complete the asymmetric unit. The structure is an alternate stacking of V2O7 layers and (Mg/Zn) atom layers along [20\overline{1}]. It is distinct from other related structures in that each V2O7 layer consists of two groups: a V2O7 dimer and a V4O14 tetramer. Mixed-occupied M1 and M2 are coordinated by oxygen atoms in distorted trigonal bipyramidal and octahedral sites, respectively.


1995 ◽  
Vol 73 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Frank E. Smith ◽  
Rosemary C. Hynes ◽  
John Tierney ◽  
Ying Z. Zhang ◽  
George Eng

The title compound was synthesized as part of an effort to produce a more effective fungicide to combat Dutch Elm Disease (DED), which is caused by the fungus Ceratocystisulmi. A full X-ray structural analysis of the 1:1 adduct has been carried out and the results are reported along with the Mössbauer data for the compound. The crystals are monoclinic, space group P21/a with a = 19.240(3) Å, b = 9.1463(24) Å, c = 19.3512(24) Å, β = 118.874(8)°, V = 2982.0(10) Å3, z = 4, and Dcalc = 1.427 Mg m−3. The final discrepancy factors are RF = 0.056 and Rw = 0.058 for 1915 significant reflections. The QS and IS values in the Mössbauer spectrum of the complex are 3.08 mm s−1 and 1.28 mm s−1, respectively. The 2,3-diphenylthiazolidin-4-one behaves as a monodentate ligand and coordinates to the tin through the oxygen atom. The complex exhibits a trigonal bipyramidal configuration with the three phenyl groups in equatorial positions and the chloride and ligand oxygen occupying the apical sites. Keywords: triorganotin, fungicide, Dutch Elm Disease, thiazolidin-4-one.


Sign in / Sign up

Export Citation Format

Share Document