scholarly journals Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239

2018 ◽  
Vol 475 (1) ◽  
pp. 273-288 ◽  
Author(s):  
Thomas M. Harper ◽  
Cynthia M. June ◽  
Magdalena A. Taracila ◽  
Robert A. Bonomo ◽  
Rachel A. Powers ◽  
...  

OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of β-lactam drugs.

2015 ◽  
Vol 60 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Shivendra Pratap ◽  
Madhusudhanarao Katiki ◽  
Preet Gill ◽  
Pravindra Kumar ◽  
Dasantila Golemi-Kotra

ABSTRACTCarbapenem-hydrolyzing class D β-lactamases (CHDLs) are a subgroup of class D β-lactamases, which are enzymes that hydrolyze β-lactams. They have attracted interest due to the emergence of multidrug-resistantAcinetobacter baumannii, which is not responsive to treatment with carbapenems, the usual antibiotics of choice for this bacterium. Unlike other class D β-lactamases, these enzymes efficiently hydrolyze carbapenem antibiotics. To explore the structural requirements for the catalysis of carbapenems by these enzymes, we determined the crystal structure of the OXA-58 CHDL ofA. baumanniifollowing acylation of its active-site serine by a 6α-hydroxymethyl penicillin derivative that is a structural mimetic for a carbapenem. In addition, several point mutation variants of the active site of OXA-58, as identified by the crystal structure analysis, were characterized kinetically. These combined studies confirm the mechanistic relevance of a hydrophobic bridge formed over the active site. This structural feature is suggested to stabilize the hydrolysis-productive acyl-enzyme species formed from the carbapenem substrates of this enzyme. Furthermore, our structural studies provide strong evidence that the hydroxyethyl group of carbapenems samples different orientations in the active sites of CHDLs, and the optimum orientation for catalysis depends on the topology of the active site allowing proper closure of the active site. We propose that CHDLs use the plasticity of the active site to drive the mechanism of carbapenem hydrolysis toward efficiency.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 217 ◽  
Author(s):  
Sandeep Chakraborty ◽  
Basuthkar J. Rao ◽  
Bjarni Asgeirsson ◽  
Ravindra Venkatramani ◽  
Abhaya M. Dandekar

The remarkable diversity in biological systems is rooted in the ability of the twenty naturally occurring amino acids to perform multifarious catalytic functions by creating unique structural scaffolds known as the active site. Finding such structrual motifs within the protein structure is a key aspect of many computational methods. The algorithm for obtaining combinations of motifs of a certain length, although polynomial in complexity, runs in non-trivial computer time. Also, the search space expands considerably if stereochemically equivalent residues are allowed to replace an amino acid in the motif. In the present work, we propose a method to precompile all possible motifs comprising of a set (n=4 in this case) of predefined amino acid residues from a protein structure that occur within a specified distance (R) of each other (PREMONITION). PREMONITION rolls a sphere of radius R along the protein fold centered at the C atom of each residue, and all possible motifs are extracted within this sphere. The number of residues that can occur within a sphere centered around a residue is bounded by physical constraints, thus setting an upper limit on the processing times. After such a pre-compilation step, the computational time required for querying a protein structure with multiple motifs is considerably reduced. Previously, we had proposed a computational method to estimate the promiscuity of proteins with known active site residues and 3D structure using a database of known active sites in proteins (CSA) by querying each protein with the active site motif of every other residue. The runtimes for such a comparison is reduced from days to hours using the PREMONITION methodology.


2000 ◽  
Vol 44 (1) ◽  
pp. 196-199 ◽  
Author(s):  
Helen M. Donald ◽  
Wendy Scaife ◽  
Sebastian G. B. Amyes ◽  
Hilary-Kay Young

ABSTRACT The sequence of the bla ARI-1 gene from imipenem-resistant Acinetobacter baumannii 6B92 has been determined. The structural gene encodes a 273-amino-acid protein which is most related to the OXA class D β-lactamases. The conserved S-T-F-K and K-T-G motifs were identified in the ARI-1 protein sequence, also named OXA-23, but significantly, a point mutation (Y→F) was identified in the Y-G-N conserved motif, also known to function in the active site.


Author(s):  
Eun-Jeong Yoon ◽  
Seok Hoon Jeong

Abstract Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5–β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.


2003 ◽  
Vol 185 (21) ◽  
pp. 6385-6391 ◽  
Author(s):  
Jenny G. Smith ◽  
Jamie A. Latiolais ◽  
Gerald P. Guanga ◽  
Sindhura Citineni ◽  
Ruth E. Silversmith ◽  
...  

ABSTRACT In a two-component regulatory system, an important means of signal transduction in microorganisms, a sensor kinase phosphorylates a response regulator protein on an aspartyl residue, resulting in activation. The active site of the response regulator is highly charged (containing a lysine, the phosphorylatable aspartate, two additional aspartates involved in metal binding, and an Mg2+ ion), and introduction of the dianionic phosphoryl group results in the repositioning of charged moieties. Furthermore, substitution of one of the Mg2+-coordinating aspartates with lysine or arginine in the Escherichia coli chemotaxis response regulator CheY results in phosphorylation-independent activation. In order to examine the consequences of altered charge distribution for response regulator activity and to identify possible additional amino acid substitutions that result in phosphorylation-independent activation, we made 61 CheY mutants in which residues close to the site of phosphorylation (Asp57) were replaced by various charged amino acids. Most substitutions (47 of 61) resulted in the complete loss of CheY activity, as measured by the inability to support clockwise flagellar rotation. However, 10 substitutions, all introducing a new positive charge, resulted in the loss of chemotaxis but in the retention of some clockwise flagellar rotation. Of the mutants in this set, only the previously identified CheY13DK and CheY13DR mutants displayed clockwise activity in the absence of the CheA sensor kinase. The absence of negatively charged substitution mutants with residual activity suggests that the introduction of additional negative charges into the active site is particularly deleterious for CheY function. Finally, the spatial distribution of positions at which amino acid substitutions are functionally tolerated or not tolerated is consistent with the presently accepted mechanism of response regulator activation and further suggests a possible role for Met17 in signal transduction by CheY.


Physiology ◽  
1996 ◽  
Vol 11 (2) ◽  
pp. 72-77 ◽  
Author(s):  
GN Somero

Protein structures are highly sensitive to temperature because their net free energies of stabilization are low, about equal to energies associated with formation of a few noncovalent ("weak") bonds. Temperature-adaptive changes in protein stability and fucntion may result from minor changes in amino acid sequence at regions outside active sites and from accumulation of stabilizing solutes in the cell.


1994 ◽  
Vol 12 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Timothy Palzkill ◽  
Quyen-Quyen Le ◽  
K. V. Venkatachalam ◽  
Mark LaRocco ◽  
Hermes Ocera

Sign in / Sign up

Export Citation Format

Share Document