scholarly journals The role of nitro groups in the binding of nitroaromatics to protein MOPC 315

1978 ◽  
Vol 173 (3) ◽  
pp. 713-722 ◽  
Author(s):  
P Gettins ◽  
D Givol ◽  
R A Dwek

Two series of dinitrophenyl haptens, in which chlorine replaces one or both nitro groups, were used to investigate, by a combination of high-resolution 1H n.m.r. and fluorescence quenching, the presence of groups in the combining site of protein MOPC 315, which form hydrogen bonds to the aromatic-ring substituents of the hapten. The large differences in binding constants on successive replacement of nitro groups were shown to be due to specific hapten-substituent-protein interactions by (a) showing that there was little difference in the interaction between these haptens and 3-methylindole (a model for the residue tryptophan-93L with which the hapten stacks in protein MOPC 315), (b) proving by 1H n.m.r. that the mode of hapten binding is constant and (c) showing that the differences in Kd were consistent with the relative hydrogen-bonding capacities of chlorine and the nitro moiety. In this way it was established that each nitro group forms a hydrogen bond. Furthermore, from consideration of the 1H n.m.r. chemical shifts of several dinitrophenyl haptens and their trinitrophenyl analogues, it was shown that there is no distortion of the o-nitro group on binding to the variable fragment of protein MOPC 315.

Author(s):  
Jan Vícha ◽  
Cina Foroutan-Nejad ◽  
Michal Straka

Illusive Au<sup>I/III</sup>···H hydrogen bonds and their effect on structure and dynamics of molecules have been a matter of debate. While a number of X-ray studies reported gold compounds with short Au<sup>I/III</sup>···H contacts, a solid spectroscopic evidence for Au<sup>I/III</sup>···H bonding has been missing. Recently<a></a><a>, Bakar <i>et al.</i></a> (NATURE COMMUNICATIONS 8:576) reported compound with four short Au···H contacts (2.61­–2.66 Å; X-ray determined). Assuming the central cluster be [Au<sub>6</sub>]<sup>2+</sup>and observing the <sup>1</sup>H (<sup>13</sup>C) NMR resonances at relevant H(C) nuclei deshielded with respect to precursor compound, the authors concluded with reservations that <i>“the present Au···H–C interaction is a kind of “hydrogen bond”, where the [Au<sub>6</sub>]<sup>2+</sup>serves as an acceptor”</i>. Here, we show that the Au<sub>6</sub>cluster in their compound bears negative charge and the Au···H contacts lead to a weak (~1 kcal/mol) auride···hydrogen bonding interactions, though unimportant for the overall stability of<b></b>the molecule. Additionally, computational analysis of NMR chemical shifts reveals that the deshielding effects at respective hydrogen nuclei are not directly related to Au···H–C hydrogen bonding .


2018 ◽  
Author(s):  
Jan Vícha ◽  
Cina Foroutan-Nejad ◽  
Michal Straka

Illusive Au<sup>I/III</sup>···H hydrogen bonds and their effect on structure and dynamics of molecules have been a matter of debate. While a number of X-ray studies reported gold compounds with short Au<sup>I/III</sup>···H contacts, a solid spectroscopic evidence for Au<sup>I/III</sup>···H bonding has been missing. Recently<a></a><a>, Bakar <i>et al.</i></a> (NATURE COMMUNICATIONS 8:576) reported compound with four short Au···H contacts (2.61­–2.66 Å; X-ray determined). Assuming the central cluster be [Au<sub>6</sub>]<sup>2+</sup>and observing the <sup>1</sup>H (<sup>13</sup>C) NMR resonances at relevant H(C) nuclei deshielded with respect to precursor compound, the authors concluded with reservations that <i>“the present Au···H–C interaction is a kind of “hydrogen bond”, where the [Au<sub>6</sub>]<sup>2+</sup>serves as an acceptor”</i>. Here, we show that the Au<sub>6</sub>cluster in their compound bears negative charge and the Au···H contacts lead to a weak (~1 kcal/mol) auride···hydrogen bonding interactions, though unimportant for the overall stability of<b></b>the molecule. Additionally, computational analysis of NMR chemical shifts reveals that the deshielding effects at respective hydrogen nuclei are not directly related to Au···H–C hydrogen bonding .


From the behaviour of monolayers of compounds containing the —CO.NH— linkage it is concluded that intermolecular hydrogen bonding can play a major role in determining the properties of condensed monolayers. Such effects, which are well marked in the ureas, amides, acetanilides, unsubstituted and α -amino acids, tend to bring about condensation and solidification, and a marked increase in the half-expansion temperature. A detailed examination of the acetamides has been made in both the expanded and condensed regions by combined force area and surface potential methods. Comparison of the condensed films with those of the analogous acetates, where no such intermolecular hydrogen bonding is possible, shows several striking differences. With the acetamides and ureas the hydrogen bonding has been shown to be quite sensitive to the pH of the substrate, very acid substrates leading to complete liquefaction. The hydrogen bond distances can be calculated and the values so obtained are found to agree quite well with those in the crystal for the same or similar head groups. The free energy difference between the —CO.NH— group when forming hydrogen bonds to water (as in the expanded films), and when cross-linked (as in the low temperature form), is calculated for the acetamides to be about 840 cal./g.mol. Values of the same order can be calculated for the other systems discussed. The importance of such measurements in determining the part played by the hydrogen bond in the protein molecule is pointed out.


2021 ◽  
Vol 11 (1) ◽  
pp. 127-134
Author(s):  
Nhung Ngo Thi Hong ◽  
Huong Dau Thi Thu ◽  
Trung Nguyen Tien

Nine stable structures of complexes formed by interaction of guanine with thymine were located on potential energy surface at B3LYP/6-311++G(2d,2p). The complexes are quite stable with interaction energy from -5,8 to -17,7 kcal.mol-1. Strength of complexes are contributed by hydrogen bonds, in which a pivotal role of N−H×××O/N overcoming C−H×××O/N hydrogen bond, up to to 3.5 times, determines stabilization of complexes investigated. It is found that polarity of N/C−H covalent bond over proton affinity of N/O site governs stability of hydrogen bond in the complexes. The obtained results show that the N/C−H×××O/N red-shifting hydrogen bonds occur in all complexes, and a larger magnitude of an elongation of N−H compared C-H bond length accompanied by a decrease of its stretching frequency is detected in the N/C−H×××O/N hydrogen bond upon complexation. The SAPT2+ analysis indicates the substantial contribution of attractive electrostatic energy versus the induction and dispersion terms in stabilizing the complexes.


Author(s):  
Wilhelm Maximilian Hützler ◽  
Michael Bolte

In order to study the preferred hydrogen-bonding pattern of 6-amino-2-thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1-methylpyrrolidin-2-one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures containR21(6) N—H...O hydrogen-bond motifs. In the latter four structures, additionalR22(8) N—H...O hydrogen-bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2-thiouracil derivatives form homodimers stabilized by anR22(8) hydrogen-bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.


Author(s):  
Rosita Diana ◽  
Angela Tuzi ◽  
Barbara Panunzi ◽  
Antonio Carella ◽  
Ugo Caruso

The title benzofuran derivatives 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1), C19H18N2O6, and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2), C18H16N2O7, recently attracted attention because of their promising antitumoral activity. BF1 crystallizes in the space group P\overline{1}. BF2 in the space group P21/c. The nitrophenyl group is inclined to benzofuran moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the molecular structures of BF1 and BF2 is the intramolecular N—H...Ocarbonyl hydrogen bond. In the crystal of BF1, the molecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of molecules along the b-axis direction are linked by O—H...Omethoxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13).


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


CrystEngComm ◽  
2020 ◽  
Vol 22 (37) ◽  
pp. 6152-6160
Author(s):  
Sandeep Kumar Dey ◽  
Archana ◽  
Sybil Pereira ◽  
Sarvesh S. Harmalkar ◽  
Shashank N. Mhaldar ◽  
...  

Intramolecular N–H⋯OC hydrogen bonding between the inner amide groups dictates the receptor–anion complementarity in a tripodal receptor towards selective encapsulation of hydrogenphosphate in the outer urea cavity by multiple hydrogen bonds.


2003 ◽  
Vol 59 (2) ◽  
pp. 263-276 ◽  
Author(s):  
Manuel Melguizo ◽  
Antonio Quesada ◽  
John N. Low ◽  
Christopher Glidewell

The molecular and supramolecular structures of eight N 4-substituted 2,4-diamino-6-benzyloxy-5-nitrosopyrimidines are discussed, along with one analogue containing no nitroso substituent. The nitroso derivatives all exhibit polarized molecular-electronic structures leading to extensive charge-assisted hydrogen bonding between the molecules. The intermolecular interactions include hard hydrogen bonds of N—H...O and N—H...N types, together with O—H...O and O—H...N types in the monohydrate of 2-amino-6-benzyloxy-4-piperidino-5-nitrosopyrimidine, soft hydrogen bonds of C—H...O, C—H...π(arene) and N—H...π(arene) types and aromatic π...π stacking interactions. The predominant supramolecular structure types take the form of chains and sheets, but no two of the structures determined here exhibit the same combination of hydrogen-bond types.


Sign in / Sign up

Export Citation Format

Share Document