scholarly journals Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle

1980 ◽  
Vol 192 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Rashid A. Akhtar ◽  
Ata A. Abdel-Latif

1. The mechanism of acetylcholine-stimulated breakdown of phosphatidyl-myo-inositol 4,5-bisphosphate and its dependence on extracellular Ca2+ was investigated in the rabbit iris smooth muscle. 2. Acetylcholine (50μm) increased the breakdown of phosphatidylinositol bisphosphate in [3H]inositol-labelled muscle by 28% and the labelling of phosphatidylinositol by 24% of that of the control. Under the same experimental conditions there was a 33 and 48% increase in the production of 3H-labelled inositol trisphosphate and inositol monophosphate respectively. Similarly carbamoylcholine and ionophore A23187 increased the production of these water-soluble inositol phosphates. Little change was observed in the 3H radioactivity of inositol bisphosphate. 3. Both inositol trisphosphatase and inositol monophosphatase were demonstrated in subcellular fractions of this tissue and the specific activity of the former was severalfold higher than that of the latter. 4. The acetylcholine-stimulated production of inositol trisphosphate and inositol monophosphate was inhibited by atropine (20μm), but not tubocurarine (100μm); and it was abolished by depletion of extracellular Ca2+ with EGTA, but restored on addition of low concentrations of Ca2+ (20μm). 5. Calcium-antagonistic agents, such as verapamil (20μm), dibenamine (20μm) or La3+ (2mm), also abolished the production of the water-soluble inositol phosphates in response to acetylcholine. 6. Release of inositol trisphosphate from exogenous phosphatidylinositol bisphosphate by iris muscle microsomal fraction (‘microsomes’) was stimulated by 43% in the presence of 50μm-Ca2+. 7. The results indicate that increased Ca2+ influx into the iris smooth muscle by acetylcholine and ionophore A23187 markedly activates phosphatidylinositol bisphosphate phosphodiesterase and subsequently increases the production of inositol trisphosphate and its hydrolytic product inositol monophosphate. The marked increase observed in the production of inositol monophosphate could also result from Ca2+ activation of phosphatidylinositol phosphodiesterase. However, there was no concomitant decrease in the 3H radioactivity of this phospholipid.

1984 ◽  
Vol 224 (1) ◽  
pp. 291-300 ◽  
Author(s):  
R A Akhtar ◽  
A A Abdel-Latif

Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 234 (1) ◽  
pp. 205-212 ◽  
Author(s):  
M W Musch ◽  
M I Siegel

Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.


1990 ◽  
Vol 259 (2) ◽  
pp. G274-G281 ◽  
Author(s):  
D. A. Dartt ◽  
D. M. Dicker ◽  
L. V. Ronco ◽  
I. M. Kjeldsen ◽  
R. R. Hodges ◽  
...  

In the lacrimal gland, cholinergic agonists stimulate protein and electrolyte/water secretion by producing inositol trisphosphate (IP3) from phosphatidylinositol bisphosphate. To determine which IP3 isomers were produced and whether inositol tetrakisphosphate (IP4) was produced during activation of secretion, rat exorbital gland acini were [3H]inositol-labeled and stimulated by the cholinergic agonist carbachol. Water-soluble inositol phosphates were separated by anion-exchange chromatography using Dowex columns or high-performance liquid chromatography. Intracellular Ca2+ concentration ([Ca2+]i) was measured by fluorescence using the Ca2+ dye fura-2. Carbachol (10(-3) M) produced a time-dependent increase in 1,4,5-IP3, 1,3,4-IP3, and 1,3,4,5-IP4 levels during 0-60 s of stimulation. The 1,4,5-IP3 level increased rapidly and was followed by a slower rise in 1,3,4-IP3 and 1,3,4,5-IP4 levels. A 3-s carbachol (10(-8) to 10(-2) M) stimulation caused a concentration-dependent rise in the 1,4,5-IP3 level. Carbachol (10(-9) to 10(-2) M) increased [Ca2+]i in a concentration-dependent manner. Carbachol (10(-3) M) increased [Ca2+]i to a maximum level by 10 s; by 60 s [Ca2+]i decreased by 38%. The maximum increase in 1,4,5-IP3 levels occurred at a higher carbachol concentration than the increase in [Ca2+]i or protein secretion. We concluded that cholinergic stimulation of the lacrimal gland rapidly increased 1,4,5-IP3 levels, which was responsible for the initial increase in [Ca2+]i and initial rapid phase of protein and fluid secretion. Cholinergic stimulation also increased 1,3,4-IP3 and 1,3,4,5-IP4, but more slowly; either acting alone or with 1,4,5-IP3, they could account for the slower phase of secretion.


1993 ◽  
Vol 121 (3) ◽  
pp. 673-678 ◽  
Author(s):  
H P McNamee ◽  
D E Ingber ◽  
M A Schwartz

The aim of these experiments was to investigate whether inositol lipids might mediate some of the effects of extracellular matrix (ECM) on cellular form and functions. The lipid phosphatidylinositol bisphosphate (PIP2) plays a role in cytoskeletal regulation while its hydrolysis products, diacylglycerol and inositol triphosphate, serve as second messengers. We therefore measured the effect of adhesion to fibronectin (FN) on PIP2 and its hydrolysis products, in the presence and absence of the soluble mitogen PDGF. PDGF induced a threefold increase in release of water-soluble inositol phosphates in C3H 10T1/2 fibroblasts when cells were attached to FN, but had little effect in suspended cells. Suppression of inositol phosphate release in unattached cells was not due to dysfunction of the PDGF receptor or failure to activate phospholipase C-gamma; PDGF induced similar tyrosine phosphorylation of PLC-gamma under both conditions. By contrast, the total mass of phosphatidylinositol bisphosphate (PIP2), the substrate for PLC-gamma, was found to decrease by approximately 80% when cells were detached from their ECM attachments and placed in suspension in the absence of PDGF. PIP2 levels were restored when suspended cells were replated on FN, demonstrating that the effect was reversible. Furthermore, a dramatic increase in synthesis of PIP2 could be measured in cells within 2 min after reattachment to FN in the absence of PDGF. These results show that FN acts directly to stimulate PIP2 synthesis, and that it also enhances PIP2 hydrolysis in response to PDGF. The increase in PIP2 induced by adhesion may mediate some of the known effects of FN on cell shape and cytoskeletal organization, while regulation of inositol lipid hydrolysis may provide a means for integrating hormone- and ECM-dependent signaling pathways.


1986 ◽  
Vol 238 (2) ◽  
pp. 491-499 ◽  
Author(s):  
S Palmer ◽  
P T Hawkins ◽  
R H Michell ◽  
C J Kirk

When hepatocytes were incubated with [32P]Pi, the kinetics for the labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were similar to each other and slightly slower than that for the labelling of the gamma-phosphate of ATP. Analysis of the water-soluble 3H-labelled materials derived from [3H]inositol-labelled hepatocytes revealed that, in addition to inositol and its mono-, bis- and tris-phosphates (Ins, InsP, InsP2 and InsP3), these cells contained two unidentified radioactive compounds which co-eluted with InsP on anion-exchange chromatography. When [3H]inositol-labelled hepatocytes were stimulated with 0.23 microM-vasopressin in the presence of 10 mM-Li+, there was an accumulation of radioactivity in InsP, InsP2 and InsP3 but not in Ins or the two unidentified compounds. Further analysis of these inositol phosphates by h.p.l.c. revealed that vasopressin also stimulates the accumulation of inositol tetrakisphosphate (InsP4) in these cells. Vasopressin-stimulated InsP and InsP2 accumulations were maximal in the presence of 1-10 mM-Li+ but InsP3 accumulation continued to increase up to 50 mM-Li+. Accumulated inositol phosphates were retained within the cell. Li+ from 1 to 50 mM did not influence the extent of vasopressin-stimulated inositol lipid degradation in hepatocytes. In the absence of Li+, radioactivity in vasopressin-stimulated hepatocytes accumulated almost entirely in free inositol. The vasopressin-stimulated accumulation of inositol phosphates in the presence of 10 mM-Li+ was abolished by a V1-vasopressin antagonist. Inositol phosphate accumulation was not influenced by ionophore A23187, dimethyl sulphoxide or indomethacin.


1985 ◽  
Vol 228 (3) ◽  
pp. 697-706 ◽  
Author(s):  
S Y Yousufzai ◽  
A A Abdel-Latif

Addition of physiological concentrations (10(-12)-10(-8)M) of platelet-activating factor (PAF) to rabbit iris muscle induced a rapid release (in 15s) of prostaglandin (PG)E2 and 6-oxo-PGF1 alpha, measured by radioimmunoassay and rapid release of 14C-labelled arachidonate and PGE2 in muscle prelabelled with [14C]arachidonic acid, measured by radiochromatography. These PAF actions are concentration- and time-dependent. The effect of PAF on PG release is not mediated through the cyclo-oxygenase pathway. The studies on the properties and mechanism of arachidonate release from phosphatidylinositol and other phospholipids in prelabelled irides by PAF suggest the involvement of a phospholipase A2. This conclusion is supported by the findings: (a) that both the removal of arachidonate and formation of lysophosphatidylinositol, from phosphatidylinositol, by PAF occur concomitantly in a time-dependent manner, (b) that Ca2+ is required for the agonist-induced release of arachidonate and PGE2, and (c) that in contrast to the rapid release of [3H]myo-inositol phosphates by carbachol and other Ca2+-mobilizing agonists previously reported in the iris muscle [Akhtar & Abdel-Latif (1984) Biochem. J. 224, 291-300], PAF (10(-12)-10(-8)M) did not appreciably enhance the release of [14C]myo-inositol phosphates and 32P labelling of phosphatidate and phosphatidylinositol in this tissue. Ca2+-channel antagonists, such as nifedipine, verapamil, diltiazem and manganese inhibited PAF-induced arachidonate and PGE2 release in a dose-dependent manner. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not increase the release of arachidonate and PGE2. The ability of Ca2+ antagonists to inhibit arachidonate release by PAF in this tissue probably reflects interference with PAF binding to its receptor. The PAF-induced release of arachidonate and PGE2 occur independently of the cyclo-oxygenase and lipoxygenase pathways. Whether the PAF-induced release of arachidonate and PG in the iris muscle is involved in the pathogenesis of inflammatory and/or physiological reactions in the eye, and how much the inhibitory effects of Ca2+-entry blockers on the PAF actions contribute to the therapeutic use of these drugs, remain to be established.


1986 ◽  
Vol 233 (1) ◽  
pp. 83-91 ◽  
Author(s):  
W Siess ◽  
M Stifel ◽  
H Binder ◽  
P C Weber

The activation of platelet V1-receptors by vasopressin (0.01-1 microM) induces the rapid formation of inositol phosphates, 1,2-diacylglycerol and phosphatidic acid, indicating inositol phospholipid hydrolysis by phospholipase C. Vasopressin immediately induces the formation of inositol bisphosphate and inositol trisphosphate. Accumulation of inositol 1-monophosphate and inositol 4-monophosphate occurs later after a time lag of 15 s. Low concentrations (10-100 nM) of vasopressin only activate phospholipase C, whereas high concentrations (1 microM) induce activation of phospholipase C and subsequently the production of arachidonate metabolites. Cyclo-oxygenase metabolites are associated with further activation of phospholipase C, release reaction and irreversible platelet aggregation. Vasopressin requires for its action extracellular Mg2+, but not Ca2+. The described platelet changes are not induced by 1-desamino-[8-D-arginine]vasopressin, a V2-receptor agonist, and are blocked by a specific V1-receptor antagonist. The results indicate that platelets possess a V1-receptor that is coupled to polyphosphoinositide hydrolysis by phospholipase C, leading to the formation of 1,2-diacylglycerol and inositol trisphosphate. Those compounds may act as second messengers for platelet responses induced by vasopressin, whereas endoperoxides and thromboxane A2 stimulated by vasopressin may serve as amplifiers for platelet activation.


2003 ◽  
Vol 73 (1) ◽  
pp. 3-7 ◽  
Author(s):  
M. E. Mavrikakis ◽  
J. P. Lekakis ◽  
M. Papamichael ◽  
K. S. Stamatelopoulos ◽  
Ch. C. Kostopoulos ◽  
...  

Previous studies have shown that patients with Raynaud’s phenomenon secondary to systemic sclerosis present abnormal endothelial function; the mechanisms responsible for the endothelial dysfunction are unknown but increased vascular oxidative stress could be a possible cause. The hypothesis that a potent water-soluble antioxidant can reverse endothelial dysfunction in these patients was tested in the present study. We examined 11 female patients with Raynaud’s phenomenon secondary to systemic sclerosis and ten healthy control women by ultrasound imaging of the brachial artery to assess flow-mediated (endothelium-dependent) and nitrate-induced (endothelium-independent) vasodilatation. Flow-mediated dilatation and nitrate-induced dilatation were significantly reduced in patients with Raynaud’s phenomenon, indicating abnormal endothelial and smooth muscle cell function. Patients with Raynaud’s phenomenon entered a double-blind, randomized, crossover placebo-controlled trial and received orally 2 g of ascorbic acid or placebo; vascular studies were repeated two hours after ascorbic acid or placebo administration. Flow-mediated dilatation did not improve after ascorbic acid (1.6 ± 2.2% to 2.2 ± 2.5%, ns) or placebo administration (1.2 ± 1,9% to 1.7 ± 1.4%, ns); also nitrate-induced dilatation was similar after ascorbic acid or placebo (16 ± 7.4% vs 17 ± 8%, ns), suggesting no effect of ascorbic acid on endothelial and vascular smooth muscle function. In conclusion, ascorbic acid does not reverse endothelial vasomotor dysfunction in the brachial circulation of patients with Raynaud’s phenomenon secondary to systemic sclerosis. The use of different antioxidants or different dosing of ascorbic acid may be required to show a beneficial effect on endothelial vasodilator function.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


Sign in / Sign up

Export Citation Format

Share Document