scholarly journals Prostaglandin biosynthesis and lipolysis in subcellular fractions from rabbit kidney medulla

1981 ◽  
Vol 194 (3) ◽  
pp. 957-961 ◽  
Author(s):  
A Erman ◽  
A Raz

Three separate prostaglandin-generating activities are associated with plasma membranes, mitochondria and microsomal fractions from rabbit kidney medulla. In the plasma membranes and mitochondria, but not in microsomal fractions, Ca2+ ions stimulate the activity of phospholipase A2, yielding selective release of arachidonic acid and linoleic acid and concomitant increase in prostaglandin E2 formation.

1979 ◽  
Vol 182 (3) ◽  
pp. 821-825 ◽  
Author(s):  
A Erman ◽  
A Raz

The bivalent cations Ca2+, Mg2+, Co2+, Mn2+, Sr2+ and Ba2+ were compared for their stimulatory or inhibitory effect on prostaglandin formation in rabbit kidney medulla slices. Ca2+, Mn2+ and Sr2+ ions stimulated prostaglandin generation up to 3–5-fold in a time- and dose-dependent manner (Ca2+ greater than Mn2+ congruent to Sr2+). The stimulation by Mn2+ (but not by Sr2+) was also observed in incubations of medulla slices in the presence of Ca2+. Mg2+ and Co2+ ions were without significant effects on either basal or Ca2+-stimulated prostaglandin synthesis. The stimulatory effects of Ca2+, Mn2+ and Sr2+ on medullary generation of prostaglandin E2 were found to correlate with their stimulatory effects on the release of arachidonic acid and linoleic acid from tissue lipids. The release of other fatty acids was unaffected, except for a small increase in oleic acid release. As both arachidonic acid and linoleic acid are predominantly found in the 2-position of the glycerol moiety of phospholipids, the stimulation by these cations of prostaglandin E2 formation appears to be mediated via stimulation of phospholipase A2 activity.


1982 ◽  
Vol 201 (3) ◽  
pp. 635-640 ◽  
Author(s):  
Arie Erman ◽  
Ruth Azuri ◽  
Amiram Raz

We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.


1985 ◽  
Vol 232 (3) ◽  
pp. 625-628 ◽  
Author(s):  
Y Fujimoto ◽  
H Uno ◽  
C Kagen ◽  
T Ueno ◽  
T Fujita

The effect of diarachidonin on the synthesis of prostaglandin E2 in rabbit kidney medulla slices was examined. The addition of diarachidonin stimulated prostaglandin E2 production in a dose-dependent manner. At three concentrations (10, 50 and 100 microM), increases in prostaglandin E2 formation induced by exogenous diarachidonin were 2-fold greater than those induced by exogenous arachidonic acid. Diacylglycerol or phosphatidic acid from egg lecithin had little or no effect on prostaglandin E2 production. Moreover, EGTA failed to inhibit diarachidonin-stimulated prostaglandin E2 formation, indicating that the stimulatory effect of diarachidonin is not mediated through the activation of endogenous phospholipase A2 (including phosphatidic acid-specific phospholipase A2). These results are discussed in the light of our former hypothesis that arachidonic acid release from kidney medulla phospholipids might occur through the sequential action of a phospholipase C coupled to diacylglycerol and monoacylglycerol lipases [Fujimoto, Akamatsu, Hattori & Fujita (1984) Biochem. J. 218, 69-74].


1984 ◽  
Vol 218 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Y Fujimoto ◽  
N Akamatsu ◽  
A Hattori ◽  
T Fujita

We have investigated the effects of phospholipase A2 and C on the synthesis of prostaglandin E2 in rabbit kidney medulla and the release of fatty acids from the medulla slices. Exogenous phospholipase A2 [from Naja naja (Indian cobra) venom] and phospholipase C (from Clostridium welchii) stimulated prostaglandin E2 production in a dose-dependent manner. At the maximal effective concentrations (0.5 unit of phospholipase A2/ml, 2 units of phospholipase C/ml), phospholipase C increased prostaglandin E2 formation to the level observed with phospholipase A2. Phospholipase A2 enhanced the release only of unsaturated fatty acids, whereas phospholipase C stimulated the release of individual free fatty acids (C 16:0, C 18:0, C 18:1, C 18:2 and C 20:4). Moreover, p-bromophenacyl bromide inhibited phospholipase A2-stimulated prostaglandin E2 production and the release of fatty acids, but it had no influence on prostaglandin E2 formation and the release of fatty acids increased by phospholipase C, indicating that the stimulatory effect of phospholipase C is not mediated through the activation of endogenous phospholipase A2. These results suggest the presence of diacylglycerol lipase and monoacylglycerol lipase in the kidney and the importance of this pathway in prostaglandin synthesis by the kidney.


1995 ◽  
Vol 307 (2) ◽  
pp. 563-569 ◽  
Author(s):  
T Nagao ◽  
T Kubo ◽  
R Fujimoto ◽  
H Nishio ◽  
T Takeuchi ◽  
...  

The fusion of secretory granules with plasma membranes prepared from rat parotid gland was studied in vitro to clarify the mechanism of exocytosis. Fusion of the granules with plasma membranes was measured by a fluorescence-dequenching assay with octadecyl rhodamine B, and release of amylase was also measured to confirm the fusion as a final step of the secretory process. Plasma membranes that had been pretreated with porcine phospholipase A2 (PLA2) in the presence of 20 microM Ca2+ fused with the granules within 30 s, and induced amylase release by reacting with the membranes of granules, whereas without this pretreatment they had no significant effect. The fusion process accompanied by amylase release was induced in the presence of 10 mM EGTA, and therefore was apparently Ca(2+)-independent. On the other hand, the presence of EGTA or 100 microM quinacrine, an inhibitor of PLA2, during treatment of plasma membranes with PLA2 inhibited their fusogenic activity, suggesting the importance of activation of PLA2. Arachidonic acid and linoleic acid were released from the plasma membranes during the PLA2 treatment. The presence of albumin, an adsorbent of fatty acids, during the treatment also inhibited the activity. Pretreatment of the membranes with arachidonic acid or linoleic acid did not have any effect, but the presence of exogenously added arachidonic acid during PLA2 treatment enhanced the membrane-fusion-inducing effect of PLA2. Pretreatment of the membranes with lysophosphatidylcholine induced fusogenic activity. These findings suggest that the conformational change in the plasma-membrane phospholipids induced by PLA2 and the presence of arachidonic acid or linoleic acid produced by PLA2 are important in the process of fusion of secretory granules with the plasma membranes of rat parotid acinar cells and that the fusion process itself is independent of Ca2+.


1983 ◽  
Vol 212 (1) ◽  
pp. 167-171 ◽  
Author(s):  
Y Fujimoto ◽  
H Tanioka ◽  
I Keshi ◽  
T Fujita

Lipid peroxidation induced by ascorbic acid and Fe2+ was inhibited by mepacrine (phospholipase A2 inhibitor) and aspirin (prostaglandin cyclo-oxygenase inhibitor) in rabbit kidney-medulla slices. Moreover, ascorbic acid and Fe2+ potentiated the inhibitory effect on prostaglandin E2 formation by mepacrine, but they had no influence on prostaglandin E2 production decreased by aspirin. Lipid peroxidation induced by ascorbic acid and Fe2+ appears to be affecting the activity of prostaglandin endoperoxide synthase. These results suggest that lipid peroxidation is connected closely with the prostaglandin-generating system, and it has the potential to modulate the turnover of arachidonic acid and prostaglandin synthesis.


1984 ◽  
Vol 36 ◽  
pp. 95
Author(s):  
Tadashi Fujita ◽  
Yohko Fujimoto ◽  
Eiko Toibana ◽  
Hidetoshi Tanioka ◽  
Taku Yamamoto

Sign in / Sign up

Export Citation Format

Share Document