scholarly journals Characterization of N-glycosylated type I collagen in streptozotocin-induced diabetes

Biochemical Journal â—½  
10.1042/bj1970405 â—½  
1981 â—½  
Vol 197 (2) â—½  
pp. 405-412 â—½  
Author(s):  
A Le Pape â—½  
J P Muh â—½  
A J Bailey

The N epsilon-glycosylation of lysine and hydroxylysine residues in collagen from streptozotocin-induced-diabetic rats was confirmed and the stability of the complex shown to be due to an Amadori rearrangement. The studies also demonstrate the relative specificities of glucose, galactose and mannose in their reaction with collagen. The glycosylation of lysine in vitro occurs with glucose and galactose, but not with mannose, whereas only gucose reacts with hydroxylysine to any significant extent. Glycosylation of collagen occurs slowly during normal aging, but in contrast with reports suggesting accelerated aging of collagen in diabetic animals, we clearly demonstrated that the apparent increased stability is not due to an acceleration of the normal maturation process involving the reducible cross-links.

1985 â—½  
Vol 20 (4) â—½  
pp. 403-410 â—½  
Author(s):  
P. W. Johnson â—½  
J. Tonzetich â—½  
R. H. Pearce
Keyword(s):  
Type I â—½  
Tail Tendon â—½  

2014 â—½  
Vol 96 (1) â—½  
pp. 18-29 â—½  
Author(s):  
E. P. Paschalis â—½  
S. Gamsjaeger â—½  
D. N. Tatakis â—½  
N. Hassler â—½  
S. P. Robins â—½  
...  

Biomedicines â—½  
2021 â—½  
Vol 9 (9) â—½  
pp. 1193
Author(s):  
Paolo Giannoni â—½  
Marco Grosso â—½  
Giuseppina Fugazza â—½  
Mario Nizzari â—½  
Maria Cristina Capra â—½  
...  

Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP) may show histopathological and radiological manifestations similar to patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts, showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further demonstrating a consistent inhibition of cells growth by this antifibrotic drug.


Biochemical Journal â—½  
10.1042/bj1850373 â—½  
1980 â—½  
Vol 185 (2) â—½  
pp. 373-381 â—½  
Author(s):  
N D Light â—½  
A J Bailey

A polymeric form of the alpha 1-chain C-terminal peptide alpha 1 CB6 (poly-alpha 1 CB6) was purified from CNBr digests of insoluble bovine tendon type-I-collagen by gel filtration and ion-exchage chromatography. The purified material had a molecular weight of 1.5 × 10(6)-5 × 10(6) on gel filtration and an amino acid content virtually identical with that of monomeric peptide alpha 1 CB6. The material could be adsorbed on affinity gels containing immobilized anti-(alpha 1 CB6-peptide non-helical region) antibodies and was an inhibitor of haemagglutination by the same antibodies of alpha 1 CB6-peptide-coated sheep erythrocytes. Periodate treatment of the material had no effect. Alkali hydrolysates were shown to contain two unknown amino acids, which were purified by gel filtration and ion-exchange chromatography in volatile buffers and are believed to be components of the mature cross-link of collagen.


2011 â—½  
Vol 994 (1-3) â—½  
pp. 117-124 â—½  
Author(s):  
Ramadhar Kumar â—½  
R. Sripriya â—½  
S. Balaji â—½  
M. Senthil Kumar â—½  
P.K. Sehgal

1997 â—½  
Vol 153 (2) â—½  
pp. 259-267 â—½  
Author(s):  
G A C van Haasteren â—½  
E Sleddens-Linkels â—½  
H van Toor â—½  
W Klootwijk â—½  
F H de Jong â—½  
...  

Abstract We investigated the effects of diabetes mellitus on the hypothalamo-hypophysial-thyroid axis in male (R×U) F1 and R-Amsterdam rats, which were found to respond to streptozotocin (STZ)-induced diabetes mellitus with no or marked increases, respectively, in plasma corticosterone. Males received STZ (65 mg/kg i.v.) or vehicle, and were killed 1, 2 or 3 weeks later. At all times studied, STZ-induced diabetes mellitus resulted in reduced plasma TSH, thyroxine (T4) and 3,5,3′-tri-iodothyronine (T3). Since the dialyzable T4 fraction increased after STZ, probably as a result of decreased T4-binding prealbumin, plasma free T4 was not altered during diabetes. In contrast, both free T3 and its dialyzable fraction decreased during diabetes, which was associated with an increase in T4-binding globulin. Hepatic activity of type I deiodinase decreased and T4 UDP-glucuronyltransferase increased after STZ treatment. Thus, the lowered plasma T3 during diabetes may be due to decreased hepatic T4 to T3 conversion. Median eminence content of TRH increased after STZ, suggesting that hypothalamic TRH release is reduced during diabetes and that this is not caused by impaired synthesis or axonal transport of TRH to the median eminence. Hypothalamic proTRH mRNA did not change in diabetic (R×U) F1 rats during the period of observation, but was lower in R-Amsterdam rats 3 weeks after STZ. Similarly, pituitary TSH and TSHβ mRNA had decreased in R-Amsterdam rats by 1 week after STZ treatment, but did not change in (R×U) F1 rats. The difference between the responses in diabetic R-Amsterdam and (R×U) F1 rats may be explained on the basis of plasma corticosterone levels which increased in R-Amsterdam rats only. Hypothalamic TRH content was not affected by diabetes mellitus, but the hypothalami of diabetic rats released less TRH in vitro than those of control rats. Moreover, insulin had a positive effect on TRH release in vitro. In conclusion, the reduced hypothalamic TRH release during diabetes is probably not caused by decreases in TRH synthesis or transport to the median eminence, but seems to be due to impaired TRH release from the median eminence which may be related to the lack of insulin. Inhibition of proTRH and TSHβ gene expression in diabetic R-Amsterdam rats is not a primary event but appears to be secondary to enhanced adrenal activity in these animals during diabetes. Journal of Endocrinology (1997) 153, 259–267


1992 â—½  
Vol 103 (1) â—½  
pp. 273-285 â—½  
Author(s):  
L. ZYLBERBERG â—½  
J. BONAVENTURE â—½  
L. COHEN-SOLAL â—½  
D. J. HARTMANN â—½  
J. BEREITERHAHN
Keyword(s):  
Type I â—½  
Fish Scales â—½  

The characterization of the fibrillar collagens and the cellular control of their spatial deposition were studied in fish scales using immunofluorescence, electron microscopy, electrophoretic and HPLC analyses, immunoprecipitation and hybridization with cDNA probes. This study was carried out on undisturbed and regenerating scales in situ and in organ and cell cultures from regenerating scales. The hyposquamal scleroblasts forming a pseudoepithelium show an apico-basal polarization and synthesize thick collagen fibrils (100 nm) organized in a plywood pattern as long as the integrity of the cell-cell and cell-collagenous matrix contacts are preserved. In culture, scleroblasts become fibroblastlike and produce an unordered meshwork of thin collagen fibrils (30 nm). Comparison of the synthesized collagens in culture with those extracted from the scales indicates that culture conditions modify fibrillogenesis but do not change the expression of fibrillar collagen genes. Type I collagen, the predominent component, is associated with the minor type V collagen. Type III collagen was not present. In type I collagen, a third chain, α3 chain, was identified. The ratio between the 3 chains suggests the coexistence of two heterotrimers (α(I))2 α2(I) and αl(I) α2(I) α3(I). Analysis by HPLC and electrophoresis of the cyanogen bromide-derived peptides obtained from the purified a3 chain support the hypothesis that α(I) and α3(I) chains are encoded by two different genes. The presence of the two types of heterotrimers in vivo as well as in vitro could correspond to an innate property of the goldfish scleroblasts. Despite the fact that teleost cyanogen bromide-derived peptides differ from those of higher vertebrates, homologies with the mammalian collagen genes (human, for example) are sufficient to allow the detection of mRNA transcripts for αl(I), α2(I) and α2(V) from confluent scleroblast cultures with human probes.


2018 â—½  
Vol 7 (5) â—½  
pp. 362-372 â—½  
Author(s):  
Y. Ueda â—½  
A. Inui â—½  
Y. Mifune â—½  
R. Sakata â—½  
T. Muto â—½  
...  

ObjectivesThe aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.MethodsUsing tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.ResultsIn tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased.ConclusionThis study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


MRS Proceedings â—½  
2002 â—½  
Vol 724 â—½  
Author(s):  
L. F. Lozano â—½  
M. A. Peña-Rico â—½  
H. Jang-Cho â—½  
A. Heredia â—½  
E. Villarreal â—½  
...  
Keyword(s):  
Stability Loss â—½  
Human Bone â—½  
Type I â—½  
Global Effect â—½  
Cross Links â—½  
The Stability â—½  

AbstractThe research about the structural stability of bone, as a composite material, compromises a complete understanding of the interaction between the mineral and organic phases. The thermal stability of human bone and type I collagen extracted from human bone by different methods was studied in order to understand the interactions between the mineral and organic phases when is affected by a degradation/combustion process. The experimental techniques employed were calorimetry and infrared spectroscopy (FTIR) techniques. The extracted type I collagens result to have a bigger thermal stability with a Tmax at 500 and 530 Celsius degrees compared with the collagen present in bone with Tmax at 350 Celsius degrees. The enthalpy value for the complete degradation/combustion process were similar for all the samples, being 8.4 +- 0.11 kJ/g for recent bones diminishing with the antiquity, while for extracted collagens were 8.9 +- 0.07 and 7.9 +-1.01 kJ/g. These findings demonstrate that the stability loss of type I collagen is due to its interactions with the mineral phase, namely carbonate hydroxyapatite. This cause a change in the molecular properties of the collagen during mineralization, specifically in its cross-links and other chemical interactions, which have a global effect over the fibers elasticity, but gaining tensile strength in bone as a whole tissue. We are applying this characterization to analyze the diagenetic process of bones with archaeological interest in order to identify how the environmental factors affect the molecular structure of type I collagen. In bone samples that proceed from an specific region with the same environmental conditions, the enthalpy value per unit mass was found to diminish exponentially with respect to the bone antiquity.


1986 â—½  
Vol 44 â—½  
pp. 210-211
Author(s):  
Arthur J. Wasserman â—½  
Kathy C. Kloos â—½  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


Sign in / Sign up

Export Citation Format

Share Document