scholarly journals Expression of the gene for Dec2, a basic helix–loop–helix transcription factor, is regulated by a molecular clock system

2004 ◽  
Vol 382 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Hidenori HAMAGUCHI ◽  
Katsumi FUJIMOTO ◽  
Takeshi KAWAMOTO ◽  
Mitsuhide NOSHIRO ◽  
Koji MAEMURA ◽  
...  

Dec2, a member of the basic helix–loop–helix superfamily, is a recently confirmed regulatory protein for the clockwork system. Transcripts of Dec2, as well as those of its related gene Dec1, exhibit a striking circadian oscillation in the suprachiasmatic nucleus, and Dec2 inhibits transcription from the Per1 promoter induced by Clock/Bmal1 [Honma, Kawamoto, Takagi, Fujimoto, Sato, Noshiro, Kato and Honma (2002) Nature (London) 419, 841–844]. It is known that mammalian circadian rhythms are controlled by molecular clockwork systems based on negative-feedback loop(s), but the molecular mechanisms for the circadian regulation of Dec2 gene expression have not been clarified. We show here that transcription of the Dec2 gene is regulated by several clock molecules and a negative-feedback loop. Luciferase and gel retardation assays showed that expression of Dec2 was negatively regulated by binding of Dec2 or Dec1 to two CACGTG E-boxes in the Dec2 promoter. Forced expression of Clock/Bmal1 and Clock/Bmal2 markedly increased Dec2 mRNA levels, and up-regulated the transcription of the Dec2 gene through the CACGTG E-boxes. Like Dec, Cry and Per also suppressed Clock/Bmal-induced transcription from the Dec2 promoter. Moreover, the circadian expression of Dec2 transcripts was abolished in the kidney of Clock/Clock mutant mice. These findings suggest that the Clock/Bmal heterodimer enhances Dec2 transcription via the CACGTG E-boxes, whereas the induced transcription is suppressed by Dec2, which therefore must contribute to its own rhythmic expression. In addition, Cry and Per may also modulate Dec2 transcription.

2020 ◽  
Vol 52 (5) ◽  
pp. 485-494 ◽  
Author(s):  
Yining Li ◽  
Shuo Tu ◽  
Yi Zeng ◽  
Cheng Zhang ◽  
Tian Deng ◽  
...  

Abstract Feedback regulation plays a pivotal role in determining the intensity and duration of TGF-β signaling and subsequently affecting the pathophysiological roles of TGF-β, including those in liver malignancy. KLF2, a member of the Krüppel-like factor (KLF) family transcription factors, has been implicated in impeding hepatocellular carcinoma (HCC) development. However, the underlying molecular mechanisms are not fully understood. In the present study, we found that TGF-β stimulates the expression of KLF2 gene in several HCC cell lines. KLF2 protein is able to inhibit TGF-β/Smad signaling in HCC cells as assessed by luciferase reporter assay. Further studies indicated that KLF2 inhibits the transcriptional activity of Smad2/3 and Smad4 and ameliorates TGF-β-induced target gene expression, therefore creating a novel negative feedback loop in TGF-β signaling. Functionally, stably expression of KLF2 in HCCLM3 cells attenuated TGF-β-induced cancer cell motility in wound-healing and transwell assays by interfering with TGF-β-mediated upregulation of MMP2. Together, our results revealed that KLF2 protein has a tumor-suppressive function in HCC through a negative feedback loop over TGF-β signaling.


2010 ◽  
Vol 30 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Youhna M Ayala ◽  
Laura De Conti ◽  
S Eréndira Avendaño-Vázquez ◽  
Ashish Dhir ◽  
Maurizio Romano ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4631
Author(s):  
Haemyeong Jung ◽  
Areum Lee ◽  
Seung Hee Jo ◽  
Hyun Ji Park ◽  
Won Yong Jung ◽  
...  

Precise flowering timing is critical for the plant life cycle. Here, we examined the molecular mechanisms and regulatory network associated with flowering in Chinese cabbage (Brassica rapa L.) by comparative transcriptome profiling of two Chinese cabbage inbred lines, “4004” (early bolting) and “50” (late bolting). RNA-Seq and quantitative reverse transcription PCR (qPCR) analyses showed that two positive nitric oxide (NO) signaling regulator genes, nitrite reductase (BrNIR) and nitrate reductase (BrNIA), were up-regulated in line “50” with or without vernalization. In agreement with the transcription analysis, the shoots in line “50” had substantially higher nitrogen levels than those in “4004”. Upon vernalization, the flowering repressor gene Circadian 1 (BrCIR1) was significantly up-regulated in line “50”, whereas the flowering enhancer genes named SUPPRESSOR OF OVEREXPRESSION OF CONSTANCE 1 homologs (BrSOC1s) were substantially up-regulated in line “4004”. CRISPR/Cas9-mediated mutagenesis in Chinese cabbage demonstrated that the BrSOC1-1/1-2/1-3 genes were involved in late flowering, and their expression was mutually exclusive with that of the nitrogen signaling genes. Thus, we identified two flowering mechanisms in Chinese cabbage: a reciprocal negative feedback loop between nitrogen signaling genes (BrNIA1 and BrNIR1) and BrSOC1s to control flowering time and positive feedback control of the expression of BrSOC1s.


2021 ◽  
Author(s):  
Sanghwa Lee ◽  
Ling Zhu ◽  
Enamul Huq

AbstractPlant growth and development are acutely sensitive to high ambient temperature ascribable in part to climate change. However, the mechanism of high ambient temperature signaling is not well defined. Here, we show that HECATEs (HEC1 and HEC2), two helix-loop-helix transcription factors, inhibit thermomorphogenesis. While the expression of HEC1 and HEC2 is increased and HEC2 protein is stabilized at high ambient temperature, hec1hec2 double mutant showed exaggerated thermomorphogenesis. Analyses of the four major PIF (PIF1, PIF3, PIF4 and PIF5) mutants and overexpression lines showed that they all contribute to promote thermomorphogenesis. Furthermore, genetic analysis showed that pifQ is epistatic to hec1hec2. HECs and PIFs oppositely control the expression of many genes in response to high ambient temperature. HEC2 interacts with PIF4 both in yeast and in vivo. In the absence of HECs, PIF4 binding to its own promoter as well as the target gene promoters was enhanced, indicating that HECs control PIF4 activity via heterodimerization. Overall, these data suggest that PIF4-HEC forms an autoregulatory composite negative feedback loop that controls growth genes to modulate thermomorphogenesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1634-1634
Author(s):  
Clemens Stockklausner ◽  
Christin Maria Duffert ◽  
Ziwei Zhou ◽  
Anne Christine Klotter ◽  
Isabelle Nadine Kuhlee ◽  
...  

Abstract The interaction between the c-Mpl receptor and its ligand thrombopoietin (TPO) on the cell surface is crucial for the regulation of thrombopoiesis. Several mutations in the c-Mpl receptor gene have been linked to a gain-of-function resulting in thrombocytosis. We have analyzed the known gain-of-function mutations in the extracellular part of the Mpl receptor, K39N and P106L, as well as the S505N, W515K and W515L mutations in the transmembrane and juxtamembrane region, respectively. Interestingly, the latter mutations can occur as autosomal dominant and/or as somatic mutations and are known to be associated with myeloproliferative malignancies and AML, whereas the abundant K39N and the P106L mutations are the cause of autosomal recessive hereditary thrombocytosis without a known predisposition to hematologic malignancies. To date, these differences in clinical impact and mode of inheritance are poorly understood. Starting from these clinical observations, we have performed functional analyses of the described gain-of-function mutations to address the key functional properties that might explain the observed clinical differences. Three crucial stages of the c-Mpl receptor life cycle were addressed: (1) post-translational processing of the immature receptor protein and its subcellular distribution, (2) membranous expression of the mature receptor and (3) receptor internalization upon stimulation with its ligand TPO. We first analyzed the post-translational processing of the normal, the K39N and the P106L mutated receptor in comparison with receptors carrying the S505N, the W515K and W515L mutations in a HeLa cell culture model. The normal, the K39N, S505N, W515K and W515L mutated c-Mpl receptors were properly glycosylated during their transport through the Golgi apparatus, whereas the P106L mutated receptor did not enter the Golgi and was not fully glycosylated. The K39N mutant was fully glycosylated but did show different running behavior on the SDS Gel, most likely caused by post-translational modifications different from glycosylation. The S505N, the W515K and the W515L mutated receptors displayed stable surface expression in confocal microscopy and FACS analysis, whereas the P106L mutated receptor was not detectable on the cell surface. After stimulation with TPO, a decrease in mean receptor surface protein could be observed for the wild type and all mutants that were expressed on the surface, namely S505N, W515K and W515L, however not significant (p>0.05). Interestingly, our functional analyses of the TPO/c-Mpl signaling pathways in TPO stimulated c-Mpl transfected BA/F3 cells showed activation of the ERK1/2 pathway in all mutants but only weaker activation of the PI3K/m-TOR and Stat3/5 signaling pathways for the P106L mutant. By contrast, cells transfected with the wild type, the S505N, W515K and W515L c-Mpl mutants showed predominant up-regulation of the PI3K/m-TOR and Stat3/5 pathways. These results show that first, both impaired and regular receptor glycosylation and correlating subcellular distribution may occur in c-Mpl gain-of function mutants. Second, the c-Mpl gain-of-function mutants differ substantially in surface expression levels. Third, our results suggest differences in the maintenance of the TPO negative feedback loop across c-Mpl gain-of-function mutants. Indeed, in contrast to P106L, it seems likely that the TPO negative feedback-loop is preserved in the S505N, the W515K and the W515L mutants. In line with this, highly elevated TPO serum levels have only been described for P106L, but not for the other gain-of-function mutations. We hypothesize that maintenance of the TPO negative feedback-loop is sufficient to prevent dysregulation of TPO levels but not transmission of a harmful c-Mpl gain-of-function effect. Instead, the predominant activation of the PI3K/m-TOR and Stat3/5 pathways might explain the different propensity to induce hematopoietic malignancy. In summary, our findings suggest the existence of different disease causing molecular mechanisms behind the mutations' respective clinical correlates and provide the basis for an important extension to the current classification of c-Mpl mutations that is primordially based on clinical observations. Disclosures No relevant conflicts of interest to declare.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009595
Author(s):  
Sanghwa Lee ◽  
Ling Zhu ◽  
Enamul Huq

Plant growth and development are acutely sensitive to high ambient temperature caused in part due to climate change. However, the mechanism of high ambient temperature signaling is not well defined. Here, we show that HECATEs (HEC1 and HEC2), two helix-loop-helix transcription factors, inhibit thermomorphogenesis. While the expression of HEC1 and HEC2 is increased and HEC2 protein is stabilized at high ambient temperature, hec1hec2 double mutant showed exaggerated thermomorphogenesis. Analyses of the four PHYTOCHROME INTERACTING FACTOR (PIF1, PIF3, PIF4 and PIF5) mutants and overexpression lines showed that they all contribute to promote thermomorphogenesis. Furthermore, genetic analysis showed that pifQ is epistatic to hec1hec2. HECs and PIFs oppositely control the expression of many genes in response to high ambient temperature. PIFs activate the expression of HECs in response to high ambient temperature. HEC2 in turn interacts with PIF4 both in yeast and in vivo. In the absence of HECs, PIF4 binding to its own promoter as well as the target gene promoters was enhanced, indicating that HECs control PIF4 activity via heterodimerization. Overall, these data suggest that PIF4-HEC forms an autoregulatory composite negative feedback loop that controls growth genes to modulate thermomorphogenesis.


Sign in / Sign up

Export Citation Format

Share Document