scholarly journals Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase

2005 ◽  
Vol 387 (3) ◽  
pp. 627-637 ◽  
Author(s):  
Yoshikazu TSUMURA ◽  
Jiro TOSHIMA ◽  
Onno C. LEEKSMA ◽  
Kazumasa OHASHI ◽  
Kensaku MIZUNO

TESK1 (testicular protein kinase 1) is a serine/threonine kinase that phosphorylates cofilin and plays a critical role in integrin-mediated actin cytoskeletal reorganization and cell spreading. We previously showed that TESK1 interacts with Sprouty-4 (referred to as Spry4), an inhibitor of growth factor-induced Ras/MAP (mitogen-activated protein) kinase signalling, but the functional role of this interaction has remained unknown. In the present study, we show that Spry4 inhibits the kinase activity of TESK1 by binding to it through the C-terminal cysteine-rich region. Expression of Spry4 in cultured cells suppressed integrin-mediated cell spreading, and TESK1 reversed the inhibitory effect of Spry4 on cell spreading. Furthermore, Spry4 suppressed integrin- and TESK1-mediated cofilin phosphorylation during the spreading of cells on laminin. These findings suggest that Spry4 suppresses cell spreading by inhibiting the kinase activity of TESK1. Although tyrosine phosphorylation is required for the inhibitory activity of Spry4 on a Ras/MAP kinase pathway, mutation of the corresponding tyrosine residue (Tyr-75 in human Spry4) to an alanine had no apparent effect on its inhibitory actions on TESK1 activity and cell spreading, which suggests a novel cellular function of Spry to regulate the actin cytoskeleton, independent of its inhibitory activity on the Ras/MAP kinase signalling.

2016 ◽  
Vol 310 (11) ◽  
pp. C921-C930 ◽  
Author(s):  
Danielle M. Trappanese ◽  
Sarah Sivilich ◽  
Hillevi K. Ets ◽  
Farah Kako ◽  
Michael V. Autieri ◽  
...  

Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.


Zygote ◽  
1995 ◽  
Vol 3 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Maki Inoue ◽  
Kunihiko Naito ◽  
Fugaku Aoki ◽  
Yutaka Toyoda ◽  
Eimei Sato

SummaryTo investigate the involvement of mitogen-activated protein kinase(MAP kinase) in meiotic maturation of porcine oocytes, we assayed MAP kinase activity using basic protein(MBP) as a substrate. MAP kinase activity was low during the germinal vesicle stage, 0–20 h of culture. An abrupt increase was observed at metaphase I(30 h of culture), and activity remained significantly higher than that at 0 h until 50 h of culture, with a transient slight decrease at the time of first polar body extrusion (40 h). Detection of the kinase activity by an in-gel phosphorylation assay confirmed that the 42 and 44 kDa MAP kinases were significantly activated in 45 h cultured oocytes but not in 0 h oocytes, and just slightly in 20 h oocytes. In immunoblotting, however, the 42 and 44 kDa bands were detected in 0, 20 and 45 h cultured oocytes. Furthermore, the signal strength of the two bands did not change during the period of culture, but shifted up to 45 h, indicating that the activation of MAP kinase depended not on the synthesis but on the phosphorylation of this enzyme. These results suggest that the activation of MAP kinase is involved in the regulation of meiotic maturation of porcine oocytes, and especially in the regulation after germinal vesicle breakdown.


1993 ◽  
Vol 122 (5) ◽  
pp. 1089-1101 ◽  
Author(s):  
FA Gonzalez ◽  
A Seth ◽  
DL Raden ◽  
DS Bowman ◽  
FS Fay ◽  
...  

The mitogen-activated protein (MAP) kinase signal transduction pathway represents an important mechanism by which growth factors regulate cell function. Targets of the MAP kinase pathway are located within several cellular compartments. Signal transduction therefore requires the localization of MAP kinase in each sub-cellular compartment that contains physiologically relevant substrates. Here, we show that serum treatment causes the translocation of two human MAP kinase isoforms, p40mapk and p41mapk, from the cytosol into the nucleus. In addition, we report that p41mapk (but not p40mapk) is localized at the cell surface ruffling membrane in serum-treated cells. To investigate whether the protein kinase activity of MAP kinase is required for serum-induced redistribution within the cell, we constructed mutated kinase-negative forms of p40mapk and p41mapk. The kinase-negative MAP kinases were not observed to localize to the cell surface ruffling membrane. In contrast, the kinase-negative MAP kinases were observed to be translocated to the nucleus. Intrinsic MAP kinase activity is therefore required only for localization at the cell surface and is not required for transport into the nucleus. Together, these data demonstrate that the pattern of serum-induced redistribution of p40mapk is different from p41mapk. Thus, in addition to common targets of signal transduction, it is possible that these MAP kinase isoforms may differentially regulate targets located in distinct sub-cellular compartments.


1998 ◽  
Vol 80 (3) ◽  
pp. 1352-1361 ◽  
Author(s):  
Saobo Lei ◽  
William F. Dryden ◽  
Peter A. Smith

Lei, Saobo, William F. Dryden, and Peter A. Smith. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J. Neurophysiol. 80: 1352–1361, 1998. The cellular mechanisms that underlie nerve growth factor (NGF) induced increase in Ca2+-channel current in adult bullfrog sympathetic B-neurons were examined by whole cell recording techniques. Cells were maintained at low density in neuron-enriched, defined-medium, serum-free tissue culture for 6 days in the presence or absence of NGF (200 ng/ml). The increase in Ba2+ current ( I Ba) density induced by NGF was attenuated by the RNA synthesis inhibitor cordycepin (20 μM), by the DNA transcription inhibitor actinomycin D (0.01 μg/ml), by inhibitors of Ras isoprenylation (perillic acid 0.1–1.0 mM or α-hydroxyfarnesylphosphonic acid 10–100 μM), by tyrosine kinase inhibitors genistein (20 μM) or lavendustin A (1 μM), and by PD98059 (10–100 μM), an inhibitor of mitogen-activated protein kinase kinase. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) pathway (wortmannin, 100 nM, or LY29400, 100 μM) were ineffective as were inhibitors of phospholipase Cγ (U73122 or neomycin, both 100 μM). The effect of NGF persisted in Ca2+-free medium that contained 1.8 mM Mg2+ and 2 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. It was mimicked by a Trk antibody that was capable of inducing neurite outgrowth in explant cultures of bullfrog sympathetic ganglion. Antibodies raised against the low-affinity p75 neurotrophin receptor were ineffective in blocking the effect of NGF on I Ba. These results suggest that NGF-induced increase in Ca2+ channel current in adult sympathetic neurons results, at least in part, from new channel synthesis after Trk activation of Ras and mitogen activated protein kinase by a mechanism that is independent of extracellular Ca2+.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document