Rab10 in insulin-stimulated GLUT4 translocation

2008 ◽  
Vol 411 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Hiroyuki Sano ◽  
William G. Roach ◽  
Grantley R. Peck ◽  
Mitsunori Fukuda ◽  
Gustav E. Lienhard

In fat and muscle cells, insulin stimulates the movement to and fusion of intracellular vesicles containing GLUT4 with the plasma membrane, a process referred to as GLUT4 translocation. Previous studies have indicated that Akt [also known as PKB (protein kinase B)] phosphorylation of AS160, a GAP (GTPase-activating protein) for Rabs, is required for GLUT4 translocation. The results suggest that this phosphorylation suppresses the GAP activity and leads to the elevation of the GTP form of one or more Rabs required for GLUT4 translocation. Based on their presence in GLUT4 vesicles and activity as AS160 GAP substrates, Rabs 8A, 8B, 10 and 14 are candidate Rabs. Here, we provide further evidence that Rab10 participates in GLUT4 translocation in 3T3-L1 adipocytes. Among Rabs 8A, 8B, 10 and 14, only the knockdown of Rab10 inhibited GLUT4 translocation. In addition, we describe the subcellular distribution of Rab10 and estimate the fraction of Rab10 in the active GTP form in vivo. Approx. 5% of the total Rab10 was present in GLUT4 vesicles isolated from the low-density microsomes. In both the basal and the insulin state, 90% of the total Rab10 was in the inactive GDP state. Thus, if insulin increases the GTP form of Rab10, the increase is limited to a small portion of the total Rab10. Finally, we report that the Rab10 mutant considered to be constitutively active (Rab10 Q68L) is a substrate for the AS160 GAP domain and, hence, cannot be used to deduce rigorously the function of Rab10 in its GTP form.

1997 ◽  
Vol 272 (6) ◽  
pp. F816-F822 ◽  
Author(s):  
T. Katsura ◽  
C. E. Gustafson ◽  
D. A. Ausiello ◽  
D. Brown

Vasopressin-dependent translocation of aquaporin-2 (AQP2) between intracellular vesicles and the plasma membrane has been demonstrated in vivo and in vitro. Furthermore, the vasopressin-induced increase in apical membrane water permeability of renal principal cells is dependent on a rise in intracellular adenosine 3',5'-cyclic monophosphate and activation of protein kinase A (PKA). To determine whether trafficking of AQP2 is dependent on PKA phosphorylation, we first examined the effect of the PKA-inhibitor N-(2[[3-(4-bromophenyl)-2-propenyl]-amino]-ethyl)-5-isoquinolinesulfonam ide (H-89) on AQP2 translocation in transfected LLC-PK1 cells. Vasopressin-induced membrane insertion of AQP2 was completely inhibited by pretreatment of the cells for 60 min with H-89. This reagent also caused a dense accumulation of AQP2 in the Golgi region. Next, LLC-PK1 cells were stably transfected with AQP2 cDNA in which the PKA phosphorylation site, Ser256, was replaced with alanine (S256A). S256A-AQP2 was not phosphorylated in vitro by PKA, and S256A-AQP2 was mainly localized to intracellular vesicles in the basal condition, similar to wild-type AQP2. However, after stimulation with vasopressin or forskolin, the cellular distribution of S256A-AQP2 remained unchanged. In addition, the usual vasopressin-induced increase in endocytosis seen in AQP2-transfected cells was not observed in S256A-AQP2-transfected cells. These results demonstrate that the Ser256 PKA phosphorylation site is possibly involved in the vasopressin-induced trafficking of AQP2 from intracellular vesicles to the plasma membrane and in the subsequent stimulation of endocytosis.


2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


1997 ◽  
Vol 136 (1) ◽  
pp. 137-154 ◽  
Author(s):  
Robert G. Parton ◽  
Michael Way ◽  
Natasha Zorzi ◽  
Espen Stang

Caveolae, flask-shaped invaginations of the plasma membrane, are particularly abundant in muscle cells. We have recently cloned a muscle-specific caveolin, termed caveolin-3, which is expressed in differentiated muscle cells. Specific antibodies to caveolin-3 were generated and used to characterize the distribution of caveolin-3 in adult and differentiating muscle. In fully differentiated skeletal muscle, caveolin-3 was shown to be associated exclusively with sarcolemmal caveolae. Localization of caveolin-3 during differentiation of primary cultured muscle cells and development of mouse skeletal muscle in vivo suggested that caveolin-3 is transiently associated with an internal membrane system. These elements were identified as developing transverse-(T)-tubules by double-labeling with antibodies to the α1 subunit of the dihydropyridine receptor in C2C12 cells. Ultrastructural analysis of the caveolin-3– labeled elements showed an association of caveolin-3 with elaborate networks of interconnected caveolae, which penetrated the depths of the muscle fibers. These elements, which formed regular reticular structures, were shown to be surface-connected by labeling with cholera toxin conjugates. The results suggest that caveolin-3 transiently associates with T-tubules during development and may be involved in the early development of the T-tubule system in muscle.


2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


1999 ◽  
Vol 19 (7) ◽  
pp. 5061-5072 ◽  
Author(s):  
Mirjana Andjelković ◽  
Sauveur-Michel Maira ◽  
Peter Cron ◽  
Peter J. Parker ◽  
Brian A. Hemmings

ABSTRACT Protein kinase B (PKB or Akt), a downstream effector of phosphoinositide 3-kinase (PI 3-kinase), has been implicated in insulin signaling and cell survival. PKB is regulated by phosphorylation on Thr308 by 3-phosphoinositide-dependent protein kinase 1 (PDK1) and on Ser473 by an unidentified kinase. We have used chimeric molecules of PKB to define different steps in the activation mechanism. A chimera which allows inducible membrane translocation by lipid second messengers that activate in vivo protein kinase C and not PKB was created. Following membrane attachment, the PKB fusion protein was rapidly activated and phosphorylated at the two key regulatory sites, Ser473 and Thr308, in the absence of further cell stimulation. This finding indicated that both PDK1 and the Ser473 kinase may be localized at the membrane of unstimulated cells, which was confirmed for PDK1 by immunofluorescence studies. Significantly, PI 3-kinase inhibitors prevent the phosphorylation of both regulatory sites of the membrane-targeted PKB chimera. Furthermore, we show that PKB activated at the membrane was rapidly dephosphorylated following inhibition of PI 3-kinase, with Ser473 being a better substrate for protein phosphatase. Overall, the results demonstrate that PKB is stringently regulated by signaling pathways that control both phosphorylation/activation and dephosphorylation/inactivation of this pivotal protein kinase.


Author(s):  
Abraham Giacoman-Martínez ◽  
Francisco Javier Alarcón-Aguilar ◽  
Alejandro Zamilpa-Alvarez ◽  
Fengyang Huang ◽  
Rodrigo Romero ◽  
...  

α-amyrin, a natural pentacyclic triterpene, have anti-hyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in IR and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along adenosine-monophosphate (AMP)-activated protein kinase (AMPK) and protein kinase B (Akt/PKB), are implicated in translocation of glucose transporter 4 (GLUT4). However, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. The work's objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt/PKB in C2C12 myoblasts. The expression of PPARδ, PPARγ, FATP, and GLUT4 was quantified using RT-qPCR and Western blot. α-amyrin increased these markers along with p-AMPK but not p-Akt/PKB. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Ji Li ◽  
Yina Ma ◽  
Jonathan Bogan

Introduction: The adaptive metabolic regulation of glucose and fatty acid in the heart plays a critical role in limiting cardiac damage caused by ischemia and reperfusion (I/R). TUG (tether containing a UBX domain, for GLUT4) can be cleaved to mobilize glucose transporter GLUT4 from intracellular vesicles to the cell surface in skeletal muscle and adipose in response to insulin stimulation. The energy sensor AMP-activated protein kinase (AMPK) plays an important cardioprotective role in response to ischemic insults by modulating GLUT4 translocation. Hypothesis: TUG is one of the downstream targets of AMPK in the heart. TUG could be phosphorylated by ischemic AMPK and cleaved to dissociate with GLUT4 and increase GLUT4 translocation in the ischemic heart. Methods: In vivo regional ischemia by ligation of left anterior coronary artery and ex vivo isolated mouse heart perfusion Langendorff system were used to test the hypothesis. Results: Antithrombin (AT) is an endogenous AMPK agonist in the heart and used to define the role of TUG in regulating GLUT4 trafficking during ischemia and reperfusion in the heart. AT showed its cardioprotective function through recovering cardiac pumping function and activating AMPK. The results showed that AMPK activation by AT treatment was through LKB1 and Sesn2 complex. Furthermore, the ex vivo heart perfusion data demonstrated that AT administration significantly increase GLUT4 translocation, glucose uptake, glycolysis and glucose oxidation during ischemia and reperfusion (p<0.05 vs . vehicle). Moreover, AT treatment increased abundance of a TUG cleavage product (42 KD) in response to I/R. The TUG protein was clearly phosphorylated by activated AMPK in HL-1 cardiomyocytes. The in vivo myocardial ischemia results demonstrated that ischemic AMPK activation triggers TUG cleavage and significantly increases GLUT4 translocation to the cell surface. Moreover, an augmented interaction between AMPK and TUG was observed during ischemia. Conclusions: Cardiac AMPK activation stimulates TUG cleavage and causes the dissociation between TUG and GLUT4 in the intracellular vesicles. TUG is a critical mediator that modulates cardiac GLUT4 translocation to cell surface and enhances glucose uptake by AMPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document