Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents

2010 ◽  
Vol 427 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Emily Flashman ◽  
Sarah L. Davies ◽  
Kar Kheng Yeoh ◽  
Christopher J. Schofield

The HIF (hypoxia-inducible factor) hydroxylases [PHDs or EGLNs (prolyl hydroxylases), which in humans are PHD isoforms 1–3, and FIH (factor inhibiting HIF)] regulate HIF levels and activity. These enzymes are Fe(II)/2-oxoglutarate-dependent oxygenases, many of which are stimulated by ascorbate. We have investigated the ascorbate dependence of PHD2-catalysed hydroxylation of two prolyl hydroxylation sites in human HIF-1α, and of FIH-catalysed hydroxylation of asparaginyl hydroxylation sites in HIF-1α and in a consensus ankyrin repeat domain peptide. The initial rate and extent of hydroxylation was increased in the presence of ascorbate for each of these reactions. When ascorbate was replaced with structural analogues, the results revealed that the ascorbate side chain was not important in its contribution to HIF hydroxylase catalysis, whereas modifications to the ene-diol portion of the molecule negated the ability to promote hydroxylation. We investigated whether alternative reducing agents (glutathione and dithiothreitol) could be used to promote HIF hydroxylase activity, and found partial stimulation of hydroxylation in an apparently enzyme- and substrate-specific manner. The results raise the possibility of developing reducing agents targeted to specific HIF hydroxylase-catalysed reactions.

2007 ◽  
Vol 282 (33) ◽  
pp. 24027-24038 ◽  
Author(s):  
Mathew L. Coleman ◽  
Michael A. McDonough ◽  
Kirsty S. Hewitson ◽  
Charlotte Coles ◽  
Jasmin Mecinović ◽  
...  

2002 ◽  
Vol 22 (9) ◽  
pp. 2984-2992 ◽  
Author(s):  
Nianli Sang ◽  
Jie Fang ◽  
Vickram Srinivas ◽  
Irene Leshchinsky ◽  
Jaime Caro

ABSTRACT Hypoxia-inducible factor 1 complex (HIF-1) plays a pivotal role in oxygen homeostasis and adaptation to hypoxia. Its function is controlled by both the protein stability and the transactivation activity of its alpha subunit, HIF-1α. Hydroxylation of at least two prolyl residues in the oxygen-dependent degradation domain of HIF-1α regulates its interaction with the von Hippel-Lindau protein (VHL) that targets HIF-1α for ubiquitination and proteasomal degradation. Several prolyl hydroxylases have been found to specifically hydroxylate HIF-1α. In this report, we investigated possible roles of VHL and hydroxylases in the regulation of the transactivation activity of the C-terminal activating domain (CAD) of HIF-1α. We demonstrate that regulation of the transactivation activity of HIF-1α CAD also involves hydroxylase activity but does not require functional VHL. In addition, stimulation of the CAD activity by a hydoxylase inhibitor, hypoxia, and desferrioxamine was severely blocked by the adenoviral oncoprotein E1A but not by an E1A mutant defective in targeting p300/CBP. We further demonstrate that a hydroxylase inhibitor, hypoxia, and desferrioxamine promote the functional and physical interaction between HIF-1α CAD and p300/CBP in vivo. Taken together, our data provide evidence that hypoxia-regulated stabilization and transcriptional stimulation of HIF-1α function are regulated through partially overlapping but distinguishable pathways.


2014 ◽  
Vol 70 (a1) ◽  
pp. C304-C304
Author(s):  
Shoichiro Horita ◽  
John Scotti ◽  
Michael McDonough ◽  
Rok Sekirnik ◽  
Rashed Chowdhury ◽  
...  

Post-translational modifications play diverse biological functions. Hydroxylation of collagen proteins has long been a recognised post-translational modification in eukaryotes. In the case of collagen, hydroxylation of prolyl residues, by 2-oxoglutarate and iron dependent enzymes (2OG oxygenases), in collagen proteins allows for the stabilisation of the collagen triple helix structure through conformational restraint and through the addition of a hydrogen bond donor. Additionally, hydroxylation of lysine side chains of collagen is required for cross-linking collagen (and possibly other proteins) in the extra-cellular matrix. Post-translational prolyl hydroxylation also plays a pivotal role in transcriptional regulation of the hypoxic response, as catalyzed by the hypoxia inducible factor / HIF prolyl hydroxylases (PHDs or EGLN enzymes). Recently, ribosomal protein hydroxylation catalyzed by 2OG- and Fe(II)-dependent oxygenases has been found to be a highly conserved post-translational modification in eukaryotes and prokaryotes (Ge et al and Loenarz et al). We present several crystal structures of 2OG oxygenases involved in ribosomal protein hydroxylation.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 350
Author(s):  
Julianty Frost ◽  
Mark Frost ◽  
Michael Batie ◽  
Hao Jiang ◽  
Sonia Rocha

Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.


2013 ◽  
Vol 62 ◽  
pp. 26-36 ◽  
Author(s):  
Rachel E. Speer ◽  
Saravanan S. Karuppagounder ◽  
Manuela Basso ◽  
Sama F. Sleiman ◽  
Amit Kumar ◽  
...  

2011 ◽  
Vol 436 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Melissa B. Pappalardi ◽  
Dean E. McNulty ◽  
John D. Martin ◽  
Kelly E. Fisher ◽  
Yong Jiang ◽  
...  

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1–3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography–tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


1984 ◽  
Vol 247 (4) ◽  
pp. F582-F587 ◽  
Author(s):  
S. R. Gullans ◽  
P. C. Brazy ◽  
L. J. Mandel ◽  
V. W. Dennis

Studies of phosphate transport in the proximal tubule have recently focused on interactions with cellular metabolism. The present studies demonstrate that two fatty acids, valerate and butyrate, and two tricarboxylic acid cycle intermediates, succinate and malate, stimulate net phosphate transport in the rabbit proximal tubule by 34-117%. Valerate had no effect on the total uptake of inorganic [32P]phosphate into suspensions of proximal tubules but did enhance the initial rate of influx. Net fluid transport was unaffected by these substrates although glucose absorption increased by 10-15% following the addition of either valerate or succinate. Since valerate, butyrate, and succinate are known to stimulate gluconeogenesis and respiration, we evaluated the role of gluconeogenesis in the stimulation of phosphate transport. The addition of 3-mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis, did not alter phosphate transport, nor did it prevent the valerate-induced stimulation of phosphate transport. We conclude that valerate, butyrate, succinate, and malate enhance phosphate transport by the proximal convoluted tubule. This action appears to be unrelated to effects on gluconeogenesis and may be related to close links between phosphate transport and oxidative metabolism.


Sign in / Sign up

Export Citation Format

Share Document