scholarly journals Biosynthesis of medium-chain fatty acids by mammary epithelial cells from virgin rats

1983 ◽  
Vol 212 (1) ◽  
pp. 155-159 ◽  
Author(s):  
S Smith ◽  
D Pasco ◽  
S Nandi

Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.

1982 ◽  
Vol 94 (2) ◽  
pp. 251-NP ◽  
Author(s):  
Janet M. Nolin ◽  
Betty J. Thompson ◽  
Stuart Smith

Two approaches were used to establish the intercellular distribution of fatty acid synthetase and thioesterase II in the lactating rat mammary gland. Thioesterase II is the chain-length regulatory enzyme in the biosynthesis of the medium-chain fatty acids characteristic of milk fat. Using immunohistochemical techniques, immunoreactive fatty acid synthetase was found in both mammary adipocytes and epithelial cells; in contrast, immunoreactive thioesterase II was confined to the epithelial cells. In metabolic studies, adipocytes and epithelial cells were isolated from lactating rat mammary glands after digestion with collagenase and thermolysin, and their lipogenic activity was studied using isotopically labelled acetate. Consistent with the immunohistochemical data, adipocytes synthesized exclusively long-chain fatty acids whereas epithelial cells synthesized predominantly medium-chain fatty acids. The results indicate that the capacity for synthesis of medium-chain fatty acids is a unique property of the epithelial cell component of the mammary gland.


1982 ◽  
Vol 202 (1) ◽  
pp. 139-143 ◽  
Author(s):  
J Knudsen ◽  
I Grunnet

1. Ruminant mammary-gland fatty acid synthetases can, in contrast with non-ruminant mammary enzymes, synthesize medium-chain fatty acids. 2. Medium-chain fatty acids are only synthesized in the presence of a fatty acid-removing system such as albumin, beta-lactoglobulin or methylated cyclodextrin. 3. The short- and medium-chain fatty acids synthesized were released as acyl-CoA esters from the fatty acid synthetase.


1984 ◽  
Vol 220 (2) ◽  
pp. 513-519 ◽  
Author(s):  
H O Hansen ◽  
I Grunnet ◽  
J Knudsen

Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5′-[beta, gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.


2018 ◽  
Vol 98 (2) ◽  
pp. 260-270 ◽  
Author(s):  
Ni Dan ◽  
Hang Zhang ◽  
Changjin Ao ◽  
Khas-Erdene

The objective of this study was to examine the effects of removing one fatty acid from a combination of long-chain fatty acids (LCFA) on milk lipogenesis in bovine mammary epithelial cells. The incubation concentration of LCFA was determined, and 100 μmol L−1 of C16:0, 5 μmol L−1 of C18:0, 100 μmol L−1 of cis-9 C18:1, 25 μmol L−1 of n-6 C18:2, and 1.2 μmol L−1 of n-3 C18:3 were used in the study. Treatments were C16:0, C18:0, C18:1, C18:2, and C18:3 combinations as control; control absent of C16:0 as A-C16:0; control absent of C18:0 as A-C18:0; control absent of C18:1 as A-C18:1; control absent of C18:2 as A-C18:2; control absent of C18:3 as A-C18:3. Results showed that compared with control, fatty acid synthetase expression was reduced by A-C18:0 and A-C18:1. Palmitic acid decreased expression of lipoprotein lipase. Compared with control, the expression of stearoyl-coenzyme A desaturase-1 and cluster of differentiation 36 was reduced by all treatments. Peroxisome proliferator-activated receptor-α expression was down-regulated by A-C16:0, A-C18:0, A-C18:1, and A-C18:2. Sterol regulatory element binding factor-1 was decreased when treated with A-C18:0, A-C18:1, and A-C18:2. Cells lack of 18-carbon fatty acid synthesized lower amount of intracellular triglyceride compared with control.


2010 ◽  
Vol 39 (10) ◽  
pp. 2297-2303 ◽  
Author(s):  
Daniele Cristina da Silva-Kazama ◽  
Geraldo Tadeu dos Santos ◽  
Paula Toshimi Matumoto Pintro ◽  
Jesuí Vergílio Visentainer ◽  
Ricardo Kazama ◽  
...  

Eight Holstein cows with body weight 570 ± 43 kg and 60 ± 20 lactation days were distributed in a double Latin square design with four 21-day periods to determine the effects of feeding ground or whole flaxseed with or without monensin supplementation (0.02% on a dry matter basis) on fatty acid profile of butter stored for 15 and 45 days. Ground flaxseed supply, in comparison to whole flaxseed, reduced relative percentages of 16:0, cis7-16:1, 17:0, and cis10-17:1 but it increased those of cis9,trans11-18:2, cis3-18:3, and omega 3 fatty acids in butter fat, reducing relative percentage of medium-chain fatty acids and increasing the content of polyunsaturated fatty acids. Supplementation with monensin increased relative percentages of cis9,trans11-18:2 and tended to increase relative percentage of 17:0 and decrease that of saturated fatty acids in butter. Butter from cows fed diet with monensin presented lower relative percentages of cis 6-20:4. Relative percentages of cis 9-16:1, cis10-17:1, 18:0, trans11-18:1, cis9-18:1, cis3-18:3, cis6-20:4 in butter stored for 15 days were higher than those stored for 45 days and the relative percentages of cis3-20:5 tended to decrease with the increase of storage period. As a result, relative percentages of saturated fatty acids and medium-chain fatty acids increased with storage time, while those of monounsaturated and long-chain fatty acids decreased. Butter enriched with polyunsaturated fatty acids may have a shorter shelf life due to the negative effect of storage on fatty acid profile which may cause oxidation and rancidity.


2012 ◽  
Vol 97 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Joris Hoeks ◽  
Marco Mensink ◽  
Matthijs K. C. Hesselink ◽  
Kim Ekroos ◽  
Patrick Schrauwen

Context: Animal studies revealed that medium-chain fatty acids (MCFA), due to their metabolic characteristics, are not stored in skeletal muscle and may therefore not give rise to potentially hazardous lipid species impeding insulin signaling. Objective: We here hypothesized that infusion of medium-chain triacylglycerols (MCT) in healthy lean subjects does not lead to ectopic fat accumulation and hence does not result in lipid-induced insulin resistance. Design and Methods: Nine healthy lean male subjects underwent a 6-h hyperinsulinemic-euglycemic clamp with simultaneous infusion of 1) a 100% long-chain triacylglycerols (LCT) emulsion, 2) a 50/50% MCT/LCT emulsion, or 3) glycerol in a randomized crossover design. Muscle biopsies were taken before and after each clamp. Results: MCT/LCT infusion raised plasma free fatty acid levels to a similar level compared with LCT infusion alone. Despite elevated free fatty acid levels, intramyocellular triacylglycerol (IMTG) levels were not affected by the MCT/LCT emulsion, whereas LCT infusion resulted in an approximately 1.6-fold increase in IMTG. These differences in muscle fat accumulation did not result in significant differences in lipid-induced insulin resistance between LCT (−28%, P = 0.003) and MCT/LCT (−20%, P < 0.001). Total skeletal muscle ceramide content as well as lactosyl- and glucosylceramide levels were not affected by any of the interventions. In addition, the distribution pattern of all ceramide species remained unaltered. Conclusions: Although we confirm that MCFA do not lead to ceramide and IMTG accumulation in skeletal muscle tissue in humans, they do induce insulin resistance. These results indicate that, in humans, MCFA may not be beneficial in preventing peripheral insulin resistance.


2009 ◽  
Vol 38 (1) ◽  
pp. 80-88 ◽  
Author(s):  
M. Medvedovic ◽  
R. Gear ◽  
J. M. Freudenberg ◽  
J. Schneider ◽  
R. Bornschein ◽  
...  

Background: This study examines the impact of dietary fatty acids on regulation of gene expression in mammary epithelial cells before and during puberty. Methods: Diets primarily consisted of n-9 monounsaturated fatty acids (olive oil), n-6 polyunsaturated fatty acids (safflower), saturated acids (butter), and the reference AIN-93G diet (soy oil). The dietary regimen mimics the repetitive nature of fatty acid exposure in Western diets. Diet-induced changes in gene expression were examined in laser capture microdissected mammary ductal epithelial cells at day of weaning and end of puberty. PCNA immunohistochemistry analysis compared proliferation rates between diets. Results: Genes differentially expressed between each test diets and the reference diet were significantly enriched by cell cycle genes. Some of these genes were involved in activation of the cell cycle pathway or the G2/M check point pathway. Although there were some differences in the level of differential expression, all diets showed qualitatively the same pattern of differential expression compared to the reference diet. Cluster analysis identified an expanded set of cell cycle as well as immunity and sterol metabolism related clusters of differentially expressed genes. Conclusion: Fatty acid-enriched diets significantly upregulated proliferation above normal physiological levels during puberty. Higher cellular proliferation during puberty caused by enriched fatty acid diets poses a potential increase risk of mammary cancer in later life. The human homologs of 27 of 62 cell cycle rat genes are included in a human breast cancer cluster of 45 cell cycle genes, further emphasizing the importance of our findings in the rat model.


Sign in / Sign up

Export Citation Format

Share Document