scholarly journals Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes

1987 ◽  
Vol 241 (3) ◽  
pp. 765-771 ◽  
Author(s):  
P J Rapiejko ◽  
C C Malbon

The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5′-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate cyclase.

1991 ◽  
Vol 279 (1) ◽  
pp. 17-22 ◽  
Author(s):  
J M Kaartinen ◽  
S P Hreniuk ◽  
L F Martin ◽  
S Ranta ◽  
K F LaNoue ◽  
...  

Fat-cells were isolated from patients of body-mass indices (BMIs) ranging from 17.9 to 83.9 kg/m2. Isoprenaline-stimulated cyclic AMP accumulation in cells prepared from obese subjects as compared with normal-weight subjects, was less sensitive to inhibition by the adenosine agonist N6-(phenylisopropyl)adenosine (PIA) (P = 0.047). The inhibition of 7 beta-desacetyl-7 beta-[gamma-(N-methylpiperazino) butyryl]-forskolin-stimulated adenylate cyclase by PIA in the presence of adenosine deaminase was also much attenuated in crude plasma membranes of adipocytes prepared from massively obese patients as compared with lean controls (P = 0.0143). This difference was probably not due to different cell size, because adenylate cyclase of crude plasma membranes of large adipocytes was actually more sensitive to PIA than was adenylate cyclase of membranes of smaller fat-cells co-isolated from the same individual. The stimulatory effect of PIA on glucose uptake in the presence of adenosine deaminase was depressed in adipocytes prepared from obese subjects and correlated with BMI at r = -0.626 (P = 0.007) at 100 nM-PIA. The adenosine receptors were studied by using the adenosine antagonist 1,3-[3H]dipropyl-8-cyclopentylxanthine. The binding was rapid and proportional to protein concentration. There was no difference in the affinities of receptors in membranes of obese and normal-weight subjects; Kd values of all patients averaged 3.3 nM. Bmax values were 54 and 130 fmol/mg of protein in membranes prepared from seven obese and five control patients respectively. The Bmax values calculated per mg of protein correlated with BMI at r = -0.539 (P = 0.047). The adenosine content of adipose tissue was higher in obese than in control subjects. These results demonstrate an attenuated response of cyclic AMP accumulation, adenylate cyclase and glucose uptake to adenosine in fat-cells prepared from obese subjects, and suggest that this change is at least partly due to changes in the amount of adenosine receptors, but not their affinity. The decreased receptor number could be due to higher adenosine content. A higher adenosine concentration in adipose tissue could explain why lipolysis is inhibited in situ in obesity, and the desensitization could explain the diminished response to adenosine analogues in isolated fat-cells.


1977 ◽  
Vol 42 (6) ◽  
pp. 884-888 ◽  
Author(s):  
R. E. Shepherd ◽  
W. L. Sembrowich ◽  
H. E. Green ◽  
P. D. Gollnick

Fat cell ghosts and homogenates of fat cells were used to study the influence of training on the regulatory system for lipolysis in adipose tissue of female rats. A training effect was identified from elevated succinate dehydrogenase activities in the soleus and plantaris muscles. Neither basal nor maximal (NaF-stimulated) adenylate cyclase activities per mg protein of fat cell ghosts were altered by training. Fluoride-stimulated adenylate cyclase activity per microgram DNA was lower in the trained than untrained group. Adenylate cyclase activities in response to norepinephrine expressed either on a per mg protein or per microgram DNA basis were lower (P less than 0.05) in fat cell ghosts from trained rats. Phosphodiesterase activity was higher (P less than 0.05) in fat cell ghosts from trained rats for cyclic AMP concentrations of 1–-5.0 micrometer. The apparent Km's of phosphodiesterase were 1.19 and 2.0 micrometer of cyclic AMP for the untrained and trained groups, respectively (P less than 0.05). Protein kinase activity in the supernatant fraction of homogenates of fat cells was unchanged due to training. The overall effect of training was to blunt the system for cyclic AMP production in rat adipocytes. This may explain, at least partially, the lower plasma free fatty acid levels observed in trained compared to untrained persons during submaximal exercise.


1991 ◽  
Vol 11 (9) ◽  
pp. 4591-4598 ◽  
Author(s):  
M R Mitts ◽  
J Bradshaw-Rouse ◽  
W Heideman

The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.


1976 ◽  
Vol 154 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J P Luzio ◽  
A C Newby ◽  
C N Hales

1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5′-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 μm-adrenaline.


Sign in / Sign up

Export Citation Format

Share Document