scholarly journals Mechanism of spontaneous intracellular calcium fluctuations in single GH4C1 rat pituitary cells

1993 ◽  
Vol 292 (1) ◽  
pp. 175-182 ◽  
Author(s):  
K A Wagner ◽  
P W Yacono ◽  
D E Golan ◽  
A H Tashjian

Individual unstimulated GH4C1 cells exhibited spontaneous dynamic fluctuations in cytosolic free Ca2+ concentration ([Ca2+]i). Either chelation of extracellular Ca2+ with EGTA or treatment with nifedipine inhibited spontaneous [Ca2+]i fluctuations, indicating that the [Ca2+]i profile was dependent on the entry of extracellular Ca2+ via voltage-operated Ca2+ channels (VOCC). Spontaneous [Ca2+]i fluctuations did not resume immediately after exposure of EGTA-pretreated cells to extracellular Ca2+, supporting the hypothesis that the complex [Ca2+]i profiles observed in unstimulated cells required filling of an intracellular Ca2+ pool. BAY K 8644 elicited large rapid oscillations in [Ca2+]i. After chelation of extracellular Ca2+, however, re-addition of Ca2+ plus BAY K 8644 did not result in [Ca2+]i oscillations. The intracellular Ca2+ pool necessary for BAY K-induced oscillations was not the same Ins(1,4,5)P3-sensitive pool stimulated by thyrotropin-releasing hormone (TRH), because the TRH-stimulated Ins(1,4,5)P3-induced [Ca2+]i spike and the BAY K 8644-induced oscillations were differentially sensitive to chelation of extracellular Ca2+ and thapsigargin. Caffeine caused an increase in [Ca2+]i fluctuations in quiescent cells, supporting a role for Ca(2+)-induced Ca2+ release (CICR) in the generation of spontaneous [Ca2+]i fluctuations. In conclusion, the complex spontaneous changes in [Ca2+]i observed in single GH4C1 cells depend on both the influx of extracellular Ca2+ through VOCC and the action of an intracellular Ca2+ pool that increases [Ca2+]i through a CICR-like mechanism.

1995 ◽  
Vol 306 (2) ◽  
pp. 399-406 ◽  
Author(s):  
K D Brady ◽  
K A Wagner ◽  
A H Tashjian ◽  
D E Golan

We have examined statistically the actions of thyrotropin-releasing hormone (TRH) and Bay K 8644, an L-type Ca(2+)-channel agonist, on the frequency and shape of cytosolic Ca2+ spikes in individual GH4C1 rat pituitary cells. TRH induced a brief (0-40 s) suppression of Ca2+ spikes followed by a period (40-200 s) of increased spike frequency. TRH treatment reduced the rate of rise and amplitude of Ca2+ spikes, and increased the rate of fall, relative to spontaneous spikes before treatment. TRH had no significant effect on the correlation between spike amplitude and the spike decay time constant tau, suggesting that the increased rate of fall was due to enhanced Ca2+ extrusion and not to decreased Ca(2+)-induced Ca2+ release. Bay K rapidly (t1/2 = 9-13 s) induced a 2-fold increase in the rate of rise of spikes with no change in the total rise time, leading to an increase in spike amplitude. It increased by 2-fold the fall time of spikes, as predicted solely by the previously observed relationship between spike amplitude and fall time. Bay K therefore appeared to increase the number of Ca2+ channels participating in each spike event without altering the kinetics of channel activation or deactivation, and without influencing Ca2+ extrusion. After addition of Bay K, the interval between spikes gradually (t1/2 approximately 100 s) increased, whereas the rate of rise remained constant and maximal. To explain these actions of TRH and Bay K, we postulate that a fraction of L-type Ca2+ channels are inactivated during each spike and must be re-activated in order to participate in a subsequent spike. We conclude further that the changes in spike frequency and profiles induced by these secretagogues are most consistent with a model in which TRH induces increases in both Ca2+ influx and efflux while Bay K induces a large increase in Ca2+ influx but has little effect on efflux.


Sign in / Sign up

Export Citation Format

Share Document