scholarly journals Staurosporine inhibits phorbol 12-myristate 13-acetate- and insulin-stimulated translocation of GLUT1 and GLUT4 glucose transporters in rat adipose cells

1994 ◽  
Vol 302 (1) ◽  
pp. 271-277 ◽  
Author(s):  
H Nishimura ◽  
I A Simpson

Staurosporine, a widely used protein kinase C inhibitor, completely inhibited both phorbol 12-myristate 13-acetate (PMA)- and insulin-stimulated glucose transport activity in isolated rat adipocytes. The inhibition was non-competitive and was attributed to a blockade of the PMA- and insulin-induced translocation of both GLUT1 and GLUT4 glucose transporters. The PMA-stimulated glucose transport activity was more sensitive to inhibition by staurosporine than was insulin-stimulated transport activity (PMA, IC50 = 1.1 +/- 0.1 microM; insulin, IC50 = 6.4 +/- 0.7 microM; P < 0.05, n = 3). At 1 microM staurosporine the insulin-sensitivity was decreased, i.e. EC50 increased from 0.12 nM to 5.4 nM, but the maximum response to insulin and the time course for stimulation were unaffected. At 6 microM staurosporine the insulin-sensitivity was further decreased, the maximal stimulation was decreased by 25%, and the apparent half-time for stimulation was extended from 2.5 min in control cells to 9.4 min. Staurosporine (30 microM) was able to block insulin's ability to stimulate glucose transport, whether added before or after insulin, by a mechanism that did not alter the rate of GLUT4 internalization. In intact adipose cells, staurosporine (30 microM) induced a slight (30%) decrease in the maximal insulin-induced receptor autophosphorylation and a similar decrease in the tyrosine phosphorylation of pp60 and pp160 (insulin-receptor substrate-1: ‘IRS-1’), but was without effect on insulin binding to its receptor. Conversely, staurosporine induced a concentration-dependent inhibition of the constitutively tyrosine-phosphorylated (pp120) protein and of an insulin-stimulated protein pp53 in the cytosol. The locus of staurosporine's action appears to be distal from the initial insulin-receptor signalling, at a step that regulates the specific translocation of the glucose transporters to the plasma membranes.

1992 ◽  
Vol 288 (1) ◽  
pp. 325-330 ◽  
Author(s):  
S J Vannucci ◽  
H Nishimura ◽  
S Satoh ◽  
S W Cushman ◽  
G D Holman ◽  
...  

Insulin-stimulated glucose transport activity in rat adipocytes is inhibited by isoprenaline and enhanced by adenosine. Both of these effects occur without corresponding changes in the subcellular distribution of the GLUT4 glucose transporter isoform. In this paper, we have utilized the impermeant, exofacial bis-mannose glucose transporter-specific photolabel, 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine (ATB-BMPA) [Clark & Holman (1990) Biochem. J. 269, 615-622], to examine the cell surface accessibility of GLUT4 glucose transporters under these conditions. Compared with cells treated with insulin alone, adenosine in the presence of insulin increased the accessibility of GLUT4 to the extracellular photolabel by approximately 25%, consistent with its enhancement of insulin-stimulated glucose transport activity; the plasma membrane concentration of GLUT4 as assessed by Western blotting was unchanged. Conversely, isoprenaline, in the absence of adenosine, promoted a time-dependent (t1/2 approximately 2 min) decrease in the accessibility of insulin-stimulated cell surface GLUT4 of > 50%, which directly correlated with the observed inhibition of transport activity; the plasma membrane concentration of GLUT4 decreased by 0-15%. Photolabelling the corresponding plasma membranes revealed that these alterations in the ability of the photolabel to bind to GLUT4 are transient, as the levels of both photolabel incorporation and plasma membrane glucose transport activity were consistent with the observed GLUT4 concentration. These data suggest that insulin-stimulated GLUT4 glucose transporters can exist in two distinct states within the adipocyte plasma membrane, one which is functional and accessible to extracellular substrate, and one which is non-functional and unable to bind extracellular substrate. These effects are only observed in the intact adipocyte and are not retained in plasma membranes isolated from these cells when analysed for their ability to transport glucose or bind photolabel.


1987 ◽  
Vol 252 (4) ◽  
pp. E441-E453 ◽  
Author(s):  
C. Carter-Su ◽  
K. Okamoto

The ability of glucocorticoids to modify the effect of insulin on glucose transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested (0-2,000 microU/ml). Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in Vmax rather than an increase in Kt of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [3H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [3H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.


1989 ◽  
Vol 257 (4) ◽  
pp. E520-E530
Author(s):  
M. F. Hirshman ◽  
L. J. Wardzala ◽  
L. J. Goodyear ◽  
S. P. Fuller ◽  
E. D. Horton ◽  
...  

We studied the mechanism for the increase in glucose transport activity that occurs in adipose cells of exercise-trained rats. Glucose transport activity, glucose metabolism, and the subcellular distribution of glucose transporters were measured in adipose cells from rats raised in wheel cages for 6 wk (mean total exercise 350 km/rat), age-matched sedentary controls, and young sedentary controls matched for adipose cell size. Basal rates of glucose transport and metabolism were greater in cells from exercise-trained rats compared with young controls, and insulin-stimulated rates were greater in the exercise-trained rats compared with both age-matched and young controls. The numbers of plasma membrane glucose transporters were not different among groups in the basal state; however, with insulin stimulation, cells from exercise-trained animals had significantly more plasma membrane transporters than young controls or age-matched controls. Exercise-trained rats also had more low-density microsomal transporters than control rats in the basal state. When the total number of glucose transporters/cell was calculated, the exercise-trained rats had 42% more transporters than did either control group. These studies demonstrate that the increased glucose transport and metabolism observed in insulin-stimulated adipose cells from exercise-trained rats is due, primarily, to an increase in the number of plasma membrane glucose transporters translocated from an enlarged intracellular pool.


1996 ◽  
Vol 271 (2) ◽  
pp. E271-E276 ◽  
Author(s):  
A. Green ◽  
R. M. Carroll ◽  
S. B. Dobias

To determine the effect of desensitization of adipocyte beta-adrenergic receptors on insulin sensitivity, rats were continuously infused with isoproterenol (50 or 100 micrograms.kg-1.h-1) for 3 days by osmotic minipumps. Epididymal adipocytes were isolated. The cells from treated animals were desensitized to isoproterenol, as determined by response of lipolysis (glycerol release). Binding of [125I]iodocyanopindolol was decreased by approximately 80% in adipocyte plasma membranes isolated from treated rats, indicating that beta-adrenergic receptors were downregulated. Cellular concentrations of Gn alpha and Gi alpha were not altered. Insulin sensitivity was determined by measuring the effect of insulin on glucose transport (2-deoxy-[3H]glucose uptake). Cells from the isoproterenol-infused rats were markedly more sensitive to insulin than those from control rats. This was evidenced by an approximately 50% increase in maximal glucose transport rate in cells from the high-dose isoproterenol-treated rats and by an approximately 40% decrease in the half-maximal effective concentration of insulin in both groups. 125I-labeled insulin binding to adipocytes was not altered by the isoproterenol infusions, indicating that desensitization of beta-adrenergic receptors results in tighter coupling between insulin receptors and stimulation of glucose transport.


1988 ◽  
Vol 251 (2) ◽  
pp. 491-497 ◽  
Author(s):  
S Matthaei ◽  
J M Olefsky ◽  
E Karnieli

This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


1997 ◽  
Vol 328 (2) ◽  
pp. 511-516 ◽  
Author(s):  
R. Lynn SORBARA ◽  
Theresa M. DAVIES-HILL ◽  
Ellen M. KOEHLER-STEC ◽  
J. Susan VANNUCCI ◽  
K. McDonald HORNE ◽  
...  

Platelets derive most of their energy from anaerobic glycolysis; during activation this requirement rises approx. 3-fold. To accommodate the high glucose flux, platelets express extremely high concentrations (155±18 pmol/mg of membrane protein) of the most active glucose transporter isoform, GLUT3. Thrombin, a potent platelet activator, was found to stimulate 2-deoxyglucose transport activity 3-5-fold within 10 min at 25 °C, with a half-time of 1-2 min. To determine the mechanism underlying the increase in glucose transport activity, an impermeant photolabel, [2-3H]2N-4-(1-azi-2,2,2-trifluoethyl)benzoyl-1,3,-bis-(d-mannose-4-ylozy)-2-propylamine, was used to covalently bind glucose transporters accessible to the extracellular milieu. In response to thrombin, the level of transporter labelling increased 2.7-fold with a half-time of 1-2 min. This suggests a translocation of GLUT3 transporters from an intracellular site to the plasma membrane in a manner analogous to that seen for the translocation of GLUT4 in insulin-stimulated rat adipose cells. To investigate whether a similar signalling pathway was involved in both systems, platelets and adipose cells were exposed to staurosporin and wortmannin, two inhibitors of GLUT4 translocation in adipose cells. Thrombin stimulation of glucose transport activity in platelets was more sensitive to staurosporin inhibition than was insulin-stimulated transport activity in adipose cells, but it was totally insensitive to wortmannin. This indicates that the GLUT3 translocation in platelets is mediated by a protein kinase C not by a phosphatidylinositol 3-kinase mechanism. In support of this contention, the phorbol ester PMA, which specifically activates protein kinase C, fully stimulated glucose transport activity in platelets and was equally sensitive to inhibition by staurosporin. This study provides a cellular mechanism by which platelets enhance their capacity to import glucose to fulfil the increased energy demands associated with activation.


1991 ◽  
Vol 278 (1) ◽  
pp. 235-241 ◽  
Author(s):  
A E Clark ◽  
G D Holman ◽  
I J Kozka

We have used an impermeant bis-mannose compound (2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos+ ++- 4-yloxy)-2- propylamine; ATB-BMPA) to photolabel the glucose transporter isoforms GLUT4 and GLUT1 that are present in rat adipose cells. Plasma-membrane fractions and light-microsome membrane fractions were both labelled by ATB-BMPA. The labelling of GLUT4 in the plasma membrane fraction from insulin-treated cells was approximately 3-fold higher than that of basal cells and corresponded with a decrease in the labelling of the light-microsome fraction. In contrast with this, the cell-surface labelling of GLUT4 from insulin-treated intact adipose cells was increased approximately 15-fold above basal levels. In these adipose cell preparations, insulin stimulated glucose transport activity approximately 30-fold. Thus the cell-surface labelling, but not the labelling of membrane fractions, closely corresponded with the stimulation of transport. The remaining discrepancy may be due to an approx. 2-fold activation of GLUT4 intrinsic transport activity. We have studied the kinetics of trafficking of transporters and found the following. (1) Lowering the temperature to 18 degrees C increased basal glucose transport and levels of cell-surface glucose transporters by approximately 3-fold. This net increase in transporters probably occurs because the process of recruitment of transporters is less temperature-sensitive than the process involved in internalization of cell-surface transporters. (2) The time course for insulin stimulation of glucose transport activity occurred with a slight lag period of 47 s and a t 1/2 3.2 min. The time course of GLUT4 and GLUT1 appearance at the cell surface showed no lag and a t 1/2 of approximately 2.3 min for both isoforms. Thus at early times after insulin stimulation there was a discrepancy between transporter abundance and transport activity. The lag period in the stimulation of transport activity may represent the time required for the approximately 2-fold stimulation of transporter intrinsic activity. (3) The decrease in transport activity after insulin removal occurred with a very high activation energy of 159 kJ.mol-1. There was thus no significant decrease in transport or less of cell-surface transporters over 60 min at 18 degrees C. The decrease in transport activity occurred with a t1/2 of 9-11 min at 37 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)


1980 ◽  
Vol 238 (3) ◽  
pp. E267-E275
Author(s):  
J. N. Livingston ◽  
B. J. Purvis

The plant lectin (wheat germ agglutinin, WGA) produces several alterations in the ability of fat cells to bind and respond to insulin. Although WGA markedly stimulated glucose oxidation, it caused only a modest stimulation of glucose transport. WGA (0.25-20 micrograms/ml) increased the binding of insulin by adipocytes, apparently by increasing the binding affinity of the insulin receptor. With low WGA concentrations (0.25-2.5 micrograms/ml), the elevation in binding was accompanied by an increase in the sensitivity of the adipocytes to insulin stimulation of glucose transport. However, the sensitivity of these cells to vitamin K5 and H2O2 was not altered. With higher WGA concentrations (5-20 micrograms/ml), stimulation of the glucose transport system by insulin, vitamin K5, or H2O2 was markedly inhibited, an effect that is reversed by the addition of ovomucoid. These findings suggest that low WGA concentrations increase the affinity of the insulin receptor and the insulin sensitivity of the cells. At higher concentrations, the lectin appears to act at another site(s) to inhibit the activation of the transport system by insulin or other agents.


1999 ◽  
Vol 343 (3) ◽  
pp. 571-577 ◽  
Author(s):  
Cynthia M. FERRARA ◽  
Samuel W. CUSHMAN

Agents that activate the G-protein Gi (e.g. adenosine) increase, and agents that activate Gs [e.g. isoprenaline (isoproterenol)] decrease, steady-state insulin-stimulated glucose transport activity and cell-surface GLUT4 in isolated rat adipose cells without changing plasma membrane GLUT4 content. Here we have further examined the effects of RsGs and RiGi ligands (in which Rs and Ri are Gs- and Gi-coupled receptors respectively) on insulin-stimulated cell-surface GLUT4 and the kinetics of GLUT4 trafficking in these same cells. Rat adipose cells were preincubated for 2 min with or without isoprenaline (200 nM) and adenosine deaminase (1 unit/ml), to stimulate Gs and decrease the stimulation of Gi respectively, followed by 0-20 min with insulin (670 nM). Treatment with isoprenaline and adenosine deaminase decreased insulin-stimulated glucose transport activity by 58%. Treatment with isoprenaline and adenosine deaminase also resulted in similar decreases in insulin-stimulated cell-surface GLUT4 as assessed by both bis-mannose photolabelling of the substrate-binding site and biotinylation of the extracellular carbohydrate moiety when evaluated under similar experimental conditions. After stimulation with insulin in the absence of Gs and the presence of Gi agents, a distinct sequence of plasma membrane events took place, starting with an increase in immunodetectable GLUT4, then an increase in the accessibility of GLUT4 to bis-mannose photolabel, and finally an increase in glucose transport activity. Pretreatment with isoprenaline and adenosine deaminase before stimulation with insulin did not affect the time course of the increase in immunodetectable GLUT4 in the plasma membrane, but did delay both the increase in accessibility of GLUT4 to photolabel and the increase in glucose transport activity. These results suggest that RsGs and RiGi modulate insulin-stimulated glucose transport by influencing the extent to which GLUT4 is associated with occluded vesicles attached to the plasma membrane during exocytosis, perhaps by regulating the fusion process through which the GLUT4 in docked vesicles becomes exposed on the cell surface.


Sign in / Sign up

Export Citation Format

Share Document