scholarly journals Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver

1998 ◽  
Vol 334 (3) ◽  
pp. 669-676 ◽  
Author(s):  
Jianping CHEN ◽  
Edward J. N. ISHAC ◽  
Paul DENT ◽  
George KUNOS ◽  
Bin GAO

To understand the mechanisms by which ethanol inhibits hepatocyte proliferation, we studied the effects of ethanol on p42/44 mitogen-activated protein kinase (MAPK), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) in normal and regenerating rat liver. Treatment of rat hepatocytes with 100 mM ethanol in vitro for 16 h prolonged the activation of p42/44 MAPK and p38 MAPK induced by various agonists. Such treatment also increased basal JNK activity, but did not potentiate or prolong agonist-induced JNK activation. Ethanol potentiation of the activation of p42/44 MAPK was abolished by pertussis toxin. In contrast, chronic ethanol consumption in vivo inhibited the activation of p42/44 MAPK, p38 MAPK and JNK induced either by partial hepatectomy or by various agonists. However, both acute and chronic ethanol inhibited hepatocyte proliferation induced by insulin and epidermal growth factor. A selective inhibitor of p42/44 MAPK partially prevented the inhibition of hepatocyte proliferation caused by acute, but not by chronic, ethanol exposure, whereas a selective inhibitor of p38 MAPK further inhibited hepatocyte proliferation under both conditions. These data suggest that acute and chronic ethanol inhibit hepatocyte proliferation by different mechanisms. The effect of acute ethanol may be related to the prolongation of p42/44 MAPK activation, whereas inhibition of hepatocyte proliferation by chronic ethanol may be due to inhibition of p38 MAPK activation.

2011 ◽  
Vol 300 (1) ◽  
pp. E103-E110 ◽  
Author(s):  
Xiaoban Xin ◽  
Lijun Zhou ◽  
Caleb M. Reyes ◽  
Feng Liu ◽  
Lily Q. Dong

The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C2C12 cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C2C12 myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.


2003 ◽  
Vol 23 (11) ◽  
pp. 3859-3871 ◽  
Author(s):  
Dmitry V. Bulavin ◽  
Oleg Kovalsky ◽  
M. Christine Hollander ◽  
Albert J. Fornace

ABSTRACT The activation of p53 is a guardian mechanism to protect primary cells from malignant transformation; however, the details of the activation of p53 by oncogenic stress are still incomplete. In this report we show that in Gadd45a −/− mouse embryo fibroblasts (MEF), overexpression of H-ras activates extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but not p38 kinase, and this correlates with the loss of H-ras-induced cell cycle arrest (premature senescence). Inhibition of p38 mitogen-activated protein kinase (MAPK) activation correlated with the deregulation of p53 activation, and both a p38 MAPK chemical inhibitor and the expression of a dominant-negative p38α inhibited p53 activation in the presence of H-ras in wild-type MEF. p38, but not ERK or JNK, was found in a complex with Gadd45 proteins. The region of interaction was mapped to amino acids 71 to 96, and the central portion (amino acids 71 to 124) of Gadd45a was required for p38 MAPK activation in the presence of H-ras. Our results indicate that this Gadd45/p38 pathway plays an important role in preventing oncogene-induced growth at least in part by regulating the p53 tumor suppressor.


2007 ◽  
Vol 27 (12) ◽  
pp. 4217-4227 ◽  
Author(s):  
Todd D. Prickett ◽  
David L. Brautigan

ABSTRACT alpha-4 is an essential gene and is a dominant antiapoptotic factor in various tissues that is a regulatory subunit for type 2A protein phosphatases. A multiplexed phosphorylation site screen revealed that knockdown of alpha-4 by small interfering RNA (siRNA) increased p38 mitogen-activated protein kinase (MAPK) and c-Jun phosphorylation without changes in JNK or ERK. FLAG-alpha-4 coprecipitated hemagglutinin-MEK3 plus endogenous protein phosphatase 2A (PP2A) and selectively enhanced dephosphorylation of Thr193, but not Ser189, in the activation loop of MEK3. Overexpression of alpha-4 suppressed p38 MAPK activation in response to tumor necrosis factor alpha (TNF-α). The alpha-4 dominant-negative domain (DND) (residues 220 to 340) associated with MEK3, but not PP2A, and its overexpression sensitized cells to activation of p38 MAPK by TNF-α and interleukin-1β, but not by ansiomycin or sorbitol. The response was diminished by nocodazole or by siRNA knockdown of the Opitz syndrome protein Mid1 that binds alpha-4 to microtubules. Interference by alpha-4 DND or alpha-4 siRNA increased caspase 3/7 activation in response to TNF-α. Growth of transformed cells in soft agar was enhanced by alpha-4 and suppressed by alpha-4 DND. The results show that alpha-4 targets PP2A activity to MEK3 to suppress p38 MAPK activation by cytokines, thereby inhibiting apoptosis and anoikis.


2008 ◽  
Vol 29 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Jaclyn W. McAlees ◽  
Virginia M. Sanders

ABSTRACT Stimulation of the β2-adrenergic receptor (β2AR) on a CD40L/interleukin-4-activated B lymphocyte increases the level of immunoglobulin E (IgE) in a protein kinase A (PKA)- and p38 mitogen-activated protein kinase (MAPK)-dependent manner. However, the mechanism by which β2AR stimulation mediates the increase in the level of p38 MAPK activation has remained unclear. Here we show that the β2AR-induced increase in p38 MAPK activation occurred via a hematopoietic protein tyrosine phosphatase (HePTP)-mediated cross talk between PKA and p38 MAPK. β2AR agonists, cAMP-elevating agents, and PKA inhibitors were used to show that β2AR stimulation resulted in a PKA-dependent increase in p38 MAPK phosphorylation. Pharmacological agents and gene-deficient mice revealed that p38 MAPK phosphorylation was regulated by the G-stimulatory (Gs)/cAMP/PKA pathway independently of the G-inhibitory or β-arrestin-2 pathways. Coimmunoprecipitation and Western blot analysis showed that HePTP was phosphorylated in a PKA-dependent manner, which inactivated HePTP and allowed for increased free p38 MAPK to be phosphorylated by the MAPK cascade that was activated by CD40L. HePTP short hairpin RNA confirmed that HePTP played a role in regulating the level of p38 MAPK phosphorylation in a B cell. Thus, β2AR stimulation on a B cell phosphorylates and inactivates HePTP in a Gs/cAMP/PKA-dependent manner to release bound p38 MAPK, making more available for phosphorylation and subsequent IgE regulation.


2007 ◽  
Vol 51 (12) ◽  
pp. 4324-4328 ◽  
Author(s):  
Shuang Wei ◽  
Benjamin J. Daniel ◽  
Michael J. Brumlik ◽  
Matthew E. Burow ◽  
Weiping Zou ◽  
...  

ABSTRACT We recently showed that the pyridinylimidazoles SB203580 and SB202190, drugs designed to block human p38 mitogen-activated protein kinase (MAPK) activation, also inhibited replication of the medically important intracellular parasite Toxoplasma gondii in cultured human fibroblasts through a direct effect on the parasite. We now show that additional pyridinylimidazole and imidazopyrimidine p38 MAPK inhibitors inhibit intracellular T. gondii replication in vitro and protect mice against fatal T. gondii infection. Mice surviving infection following treatment with p38 MAPK inhibitors were resistant to subsequent T. gondii challenge, demonstrating induction of protective immunity. Thus, drugs originally developed to block human p38 MAPK activation are useful for treating T. gondii infection without inducing significant immunosuppression. MAPK inhibitors combined with either of the approved anti-Toxoplasma drugs sulfadiazine and pyrimethamine resulted in improved survival among mice challenged with a fatal T. gondii inoculum. A MAPK inhibitor also treated mice infected with the Microsporidium parasite Encephalitozoon cuniculi, suggesting that MAPK inhibitors represent a novel class of agents that may have a broad spectrum of antiparasitic activity. Preliminary studies implicate a T. gondii MAPK homologue as the target of drug action, suggesting possibilities for more-selective agents.


1998 ◽  
Vol 18 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Paul Schwenger ◽  
Deborah Alpert ◽  
Edward Y. Skolnik ◽  
Jan Vilček

ABSTRACT Many actions of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) on gene expression are mediated by the transcription factor NF-κB. Activation of NF-κB by TNF and IL-1 is initiated by the phosphorylation of the inhibitory subunit, IκB, which targets IκB for degradation and leads to the release of active NF-κB. The nonsteroidal anti-inflammatory drug sodium salicylate (NaSal) interferes with TNF-induced NF-κB activation by inhibiting phosphorylation and subsequent degradation of the IκBα protein. Recent evidence indicated that NaSal activates the p38 mitogen-activated protein kinase (MAPK), raising the possibility that inhibition of NF-κB activation by NaSal is mediated by p38 MAPK. We now show that inhibition of TNF-induced IκBα phosphorylation and degradation by NaSal is prevented by treatment of cells with SB203580, a highly specific p38 MAPK inhibitor. Both p38 activation and inhibition of TNF-induced IκBα degradation were seen after only 30 s to 1 min of NaSal treatment. Induction of p38 MAPK activation and inhibition of TNF-induced IκBα degradation were demonstrated with pharmacologically achievable doses of NaSal. These findings provide evidence for a role of NaSal-induced p38 MAPK activation in the inhibition of TNF signaling and suggest a possible role for the p38 MAPK in the anti-inflammatory actions of salicylates. In addition, these results implicate the p38 MAPK as a possible negative regulator of TNF signaling that leads to NF-κB activation.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


Sign in / Sign up

Export Citation Format

Share Document