scholarly journals Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP

2015 ◽  
Vol 35 (5) ◽  
Author(s):  
Indra Mani ◽  
Renu Garg ◽  
Satyabha Tripathi ◽  
Kailash N. Pandey

Atrial natriuretic peptide (ANP) modulates blood pressure and fluid volume by activation of natriuretic peptide receptor-A (NPRA). Immunofluorescence (IF) studies reveal that NPRA is internalized and redistributed into subcellular compartments with concurrent production of cGMP.

2018 ◽  
Vol 50 (11) ◽  
pp. 913-928 ◽  
Author(s):  
Kailash N. Pandey

Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.


2001 ◽  
Vol 79 (8) ◽  
pp. 631-639 ◽  
Author(s):  
Kailash N Pandey

The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumably degraded within the lysosomes. It is apparent that NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. This review describes the experiments addressing the interaction of ANP with the NPRA, the receptor-mediated internalization and stoichiometric distribution of ANP-NPRA complexes from cell surface to cell interior, and its release into culture media. It is hypothesized that after internalization, the ligand-receptor complexes dissociate inside the cell and a population of NPRA recycles back to plasma membrane. Subsequently, some of the dissociated ligand molecules escape the lysosomal degradative pathway and are released intact into culture media, which reenter the cell by retroendocytotic mechanisms. By utilizing the pharmacologic and physiologic perturbants, the emphasis has been placed on the cellular regulation and processing of ligand-receptor complexes in intact cells. I conclude the discussion by examining the data available on the utilization of deletion mutations of NPRA cDNA, which has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of NPRA.Key words: atrial natriuretic peptide receptor-A, guanylyl cyclase receptors, ANP-binding, internalization and recycling of receptor, lysosomal hydrolysis.


2016 ◽  
Vol 310 (1) ◽  
pp. F68-F84 ◽  
Author(s):  
Indra Mani ◽  
Renu Garg ◽  
Kailash N. Pandey

Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe790, Gln791, Gln792, and Ile793) motif in the carboxyl-terminal region of NPRA. Mouse mesangial cells (MMCs) were transiently transfected with the enhanced green fluorescence protein (eGFP)-tagged wild-type (WT) and mutant constructs of eGFP-NPRA. The mutation FQQI/AAAA, in the eGFP-NPRA cDNA sequence, markedly attenuated the internalization of mutant receptors by almost 49% compared with the WT receptor. Interestingly, we show that the μ1B subunit of adaptor protein-1 binds directly to a phenylalanine-based FQQI motif in the cytoplasmic tail of the receptor. However, subcellular trafficking indicated that immunofluorescence colocalization of the mutated receptor with early endosome antigen-1 (EEA-1), lysosome-associated membrane protein-1 (LAMP-1), and Rab 11 marker was decreased by 57% in early endosomes, 48% in lysosomes, and 42% in recycling endosomes, respectively, compared with the WT receptor in MMCs. The receptor containing the mutated motif (FQQI/AAAA) also produced a significantly decreased level of intracellular cGMP during subcellular trafficking than the WT receptor. The coimmunoprecipitation assay confirmed a decreased level of colocalization of the mutant receptor with subcellular compartments during endocytic processes. The results suggest that the FQQI motif is essential for the internalization and subcellular trafficking of NPRA during the hormone signaling process in intact MMCs.


2011 ◽  
Vol 89 (8) ◽  
pp. 557-573 ◽  
Author(s):  
Kailash N. Pandey

Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.


Sign in / Sign up

Export Citation Format

Share Document