scholarly journals The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yang Yang ◽  
Xiao-Wei Peng

As one of the most common primary intraocular carcinomas, retinoblastoma generally stems from the inactivation of the retinoblastoma RB1 gene in retinal cells. Antisense non-coding RNA in the INK4 locus (ANRIL), a long non-coding RNA (lncRNA), has been reported to affect tumorigenesis and progression of various cancers, including gastric cancer and non-small cell lung cancer. However, limited investigations emphasized the role of ANRIL in human retinoblastoma. Hence, the current study was intended to investigate the effects of ANRIL on the proliferation, apoptosis, and invasion of retinoblastoma HXO-RB44 and Y79 cells. The lentivirus-based packaging system was designed to aid the up-regulation of ANRIL and ATM expressions or employed for the down-regulation of ANRIL in human retinoblastoma cells. Afterward, ANRIL expression, mRNA and protein expression of ATM and E2F1, and protein expression of INK4b, INK4a, alternate reading frame (ARF), p53 and retinoblastoma protein (pRB) were determined in order to elucidate the regulation effect associated with ANRIL on the ATM-E2F1 signaling pathway. In addition, cell viability, apoptosis, and invasion were detected accordingly. The results indicated that the down-regulation of ANRIL or up-regulation of ATM led to an increase in the expressions of ATM, E2F1, INK4b, INK4a, ARF, p53, and pRB. The silencing of ANRIL or up-regulation of ATM exerted an inhibitory effect on the proliferation and invasion while improving the apoptosis of HXO-RB44 and Y79 cells. In conclusion, the key observations of our study demonstrated that ANRIL depletion could act to suppress retinoblastoma progression by activating the ATM-E2F1 signaling pathway. These results provide a potentially promising basis for the targetted intervention treatment of human retinoblastoma.

2017 ◽  
Vol 41 (6) ◽  
pp. 2489-2502 ◽  
Author(s):  
Bo Yu ◽  
Xuan Ye ◽  
Qiong Du ◽  
Bin Zhu ◽  
Qing Zhai

Background/Aims: The long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) contributes to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer remains unknown. In the present study, we investigated whether CRNDE was involved in the development of colorectal cancer via the binding of microRNA (miR)-217 with transcription factor 7-like 2 (TCF7L2) to enhance the Wnt signaling pathway. Methods: Quantitative polymerase chain reaction was used to detect CRNDE, miR-217 and TCF7L2 in colorectal cancer tissues and cells. The CCK-8 assay, wound healing assay, and Transwell assay were used to detect cell proliferation, migration and invasion, respectively. Western blotting and luciferase activity assays were used to identify CRNDE and TCF7L2 as one of the direct targets of miR-217. The activity of the Wnt/β-catenin signaling pathway was analyzed by the TOPflash assay, and the subcellular localization of β-catenin and TCF7L2 was analyzed by western blotting and confocal microscopy. Results: In this study, we found that high expression of CRNDE is negatively correlated with low expression of miR-217 in colorectal cancer tissue and colorectal cancer cells. The dual luciferase reporter analysis showed that miR-217 is bound to CRNDE and TCF7L2 and negatively regulate their expression. CRNDE down-regulation inhibited the cell proliferation, migration and invasion in vitro and in vivo and the inhibitions were both completely blocked after miR-217 inhibition or TCF7L2 overexpression. Finally, TOPflash analysis showed that the activity of Wnt/β-catenin signaling is inhibited by CRNDE down-regulation and rescued by TCF7L2 over-expression. Consistently immunostaining and western blotting analysis showed that the expression of b-catenin and TCF7L2 in the nucleus was significantly decreased by CRNDE down-regulation and was rescued by TCF7L2 over-expression. Conclusions: The present study suggest that CRNDE involves in the cell proliferation, migration and invasion of colorectal cancer cells via increasing the expression of TCF7L2 and activity of Wnt/β-catenin signaling through binding miR-217 competitively.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Zengshu Xing ◽  
Sailian Li ◽  
Zhenxiang Liu ◽  
Chong Zhang ◽  
Meijiang Meng ◽  
...  

Abstract Prostate cancer is a kind of male malignant tumor, which has brought tremendous health threat to men. Prostate cancer is difficult to be cured because of high incidence and metastasis rate. Thereby, it is of great urgency to elucidate the underlying molecular mechanism of prostate cancer for the treatment of this cancer. LINC00473 dysregulation has been observed in many cancers. However, the role of LINC00473 was unknown in prostate cancer. In the present study, we discovered that prostate cancer cells presented high expression of LINC00473, and LINC00473 inhibition limited cell proliferation and the expression of proteins in JAK-STAT3 signaling pathway. Additionally, LINC00473 acted as an up-stream factor for miR-195-5p to negatively modulate miR-195-5p expression. Moreover, SEPT2 interacted with miR-195-5p in prostate cancer and SEPT2 expression was positively modulated by LINC00473 and negatively regulated by miR-195-5p. Last, the inhibitory effect of LINC00473 knockdown on cell proliferation and expression of proteins of JAK-STAT3 signaling pathway was restored by SEPT2 overexpression. All in all, LINC00473 contributed to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer, which provided a novel therapeutic tactic for prostate cancer patients.


2017 ◽  
Vol 87 ◽  
pp. 683-691 ◽  
Author(s):  
Hongxu Zhang ◽  
Jianguang Zhong ◽  
Zhenyu Bian ◽  
Xiang Fang ◽  
You Peng ◽  
...  

2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


2020 ◽  
Vol 15 (1) ◽  
pp. 284-295
Author(s):  
Yongtian Zhang ◽  
Dandan Zhao ◽  
Shumei Li ◽  
Meng Xiao ◽  
Hongjing Zhou ◽  
...  

AbstractMultiple myeloma (MM) is a serious health issue in hematological malignancies. Long non-coding RNA taurine-upregulated gene 1 (TUG1) has been reported to be highly expressed in the plasma of MM patients. However, the functions of TUG1 in MM tumorigenesis along with related molecular basis are still undefined. In this study, increased TUG1 and decreased microRNA-34a-5p (miR-34a-5p) levels in MM tissues and cells were measured by the real-time quantitative polymerase reaction assay. The expression of relative proteins was determined by the Western blot assay. TUG1 knockdown suppressed cell viability, induced cell cycle arrest and cell apoptosis in MM cells, as shown by Cell Counting Kit-8 and flow cytometry assays. Bioinformatics analysis, luciferase reporter assay, and RNA pull-down assay indicated that miR-34a-5p was a target of TUG1 and directly bound to notch receptor 1 (NOTCH1), and TUG1 regulated the NOTCH1 expression by targeting miR-34a-5p. The functions of miR-34a-5p were abrogated by TUG1 upregulation. Moreover, TUG1 loss impeded MM xenograft tumor growth in vivo by upregulating miR-34a-5p and downregulating NOTCH1. Furthermore, TUG1 depletion inhibited the expression of Hes-1, Survivin, and Bcl-2 protein in MM cells and xenograft tumors. TUG1 knockdown inhibited MM tumorigenesis by regulating the miR-34a-5p/NOTCH1 signaling pathway in vitro and in vivo, deepening our understanding of the TUG1 function in MM.


Sign in / Sign up

Export Citation Format

Share Document