scholarly journals Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Jiangwei Chen ◽  
Zunwen Lin ◽  
Kui Deng ◽  
Bin Shao ◽  
Dong Yang

Abstract Background: Intervertebral disc degeneration is a common degenerative disease. The present study aimed to explore the role and mechanism of tension-induced endoplasmic reticulum stress in intervertebral disc degeneration. Methods: Intervertebral disc degeneration models of SD rat were analyzed for apoptosis, the expression of Poly(ADP-ribose) polymerase (PARP), Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP using immunohistochemistry, qPCR and Western blot analysis. Annulus fibrosus cells of intervertebral disc were isolated, subjected to cyclic deformation stress and analyzed for ROS and apoptosis, lysosome activity and expression of genes. The cells were knockdown with siRNA or treated with endoplasmic reticulum stress inhibitor 4-PBA and assayed for ROS, apoptosis, lysosome activity and gene expression. Results: Compared with the controls, intervertebral disc degeneration was observed through X-rays examinations and HS staining. Apoptosis and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly increased in the intervertebral disc tissue of the models. In mechanic mimic experiments, the primary annulus fibrosus cells were subjected to 18% cyclic deformation, ROS and apoptosis as well as the activity of lysosome were increased. Similarly, the expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP was also increased significantly after deformation treatment. On other hand, when the cells were treated with 9 mM 4-PBA and/or CHOP-siRNA4, the apoptosis rate, ROS level, lysosome activity and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly reduced. Conclusions: Autophagy reaction mediated by endoplasmic reticulum stress plays important rale in tension-induced intervertebral disc degeneration. Intervertebral disc degeneration likely results from interactions between autophagy, apoptosis and reticulum stress, and is ROS-dependent.

2019 ◽  
Author(s):  
Takashi Ohnishi ◽  
Katsuhisa Yamada ◽  
Koji Iwasaki ◽  
Takeru Tsujimoto ◽  
Hideaki Higashi ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhu Guo ◽  
Chensheng Qiu ◽  
Christina Mecca ◽  
Yang Zhang ◽  
Jiang Bian ◽  
...  

Abstract Background Intervertebral disc degeneration (IVDD) is a primary cause of degenerative disc diseases; however, the mechanisms underlying the degeneration remain unclear. The immunoinflammatory response plays an important role in IVDD progression. The inflammatory cytokine lymphotoxin-α (LTα), formerly known as TNFβ, is associated with various pathological conditions, while its role in the pathogenesis of IVDD remains elusive. Methods Real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting (WB), and enzyme-linked immunosorbent assays were used to assess the levels of LTα in human nucleus pulposus (NP) tissues between degeneration and control groups. The plasma concentrations of LTα and C-reactive protein (CRP) were compared between healthy and IVDD patients. Rat primary NP cells were cultured and identified via immunofluorescence. Methyl-thiazolyl-tetrazolium assays and flow cytometry were used to evaluate the effects of LTα on rat NP cell viability. After NP cells were treated with LTα, degeneration-related molecules (Caspase-3, Caspase-1, matrix metalloproteinase (MMP) -3, aggrecan and type II collagen) were measured via RT-qPCR and WB. Results The levels of both the mRNA and protein of LTα in human degenerated NP tissue significantly increased. Plasma LTα and CRP did not differ between healthy controls and IVDD patients. Rat primary NP cells were cultured, and the purity of primary NP cells was > 90%. Cell experiments showed inversely proportional relationships among the LTα dose, treatment time, and cell viability. The optimal conditions (dose and time) for LTα treatment to induce rat NP cell degeneration were 5 μg/ml and 48 ~ 72 h. The apoptosis rate and the levels of Caspase-3, Caspase-1, and MMP-3 significantly increased after LTα treatment, while the levels of type II collagen and aggrecan were decreased, and the protein expression levels were consistent with their mRNA expression levels. Conclusions This study demonstrated that elevated LTα is closely associated with IVDD and that LTα may induce NP cell apoptosis and reduce important extracellular matrix (ECM) proteins, which cause adverse effects on IVDD progress. Moreover, the optimal conditions for LTα treatment to induce NP cell degeneration were determined.


Author(s):  
John McMorran ◽  
Diane Gregory

Abstract In light of the correlation between chronic back pain and intervertebral disc degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus- annulus fibrosus interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates, the nucleus pulposus, and the annulus fibrosus, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized nucleus pulposus on the annulus fibrosus, and how injuries interrupting support to the annulus fibrosus may contribute to intervertebral disc degeneration.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Shen Yan ◽  
Liu Yingchao ◽  
Wang Zhangliu ◽  
Ruan Xianli ◽  
Li Si ◽  
...  

The purpose of this study was to verify the effect of berberine (BBR) on endoplasmic reticulum stress (ERS) and apoptosis of intestinal epithelial cells (IECs) in mice with ulcerative colitis (UC). BALB/c mice were randomly divided into five groups as follows: blank control, model, and low-, medium-, and high-dose BBR. A dextran sodium sulfate- (DSS-) induced model of UC was prepared, and the low-, medium-, and high-dose BBR groups were simultaneously gavaged with a BBR suspension for 7 d. Disease activity index (DAI) was assessed, and tissue damage index (TDI) was assessed from colon samples after the last administration. TUNEL assays were used to detect apoptosis of IECs. Immunohistochemistry and/or real-time PCR were applied to determine the expression of GRP78, caspase-12, and caspase-3. In all BBR treatment groups, clinical symptoms of colitis and histopathological damage were significantly reduced. The high-dose BBR group exhibited particularly pronounced decrease (p<0.01) in both DAI (0.48 ± 0.36) and TDI (1.62 ± 0.64) relative to the model group (1.50 ± 0.65 and 3.88 ± 0.04, respectively). In colon tissues of the model group, the number of apoptotic IECs was significantly increased; the expression of GRP78, caspase-12, and caspase-3 proteins was significantly increased; and the expression of the GRP78 mRNA was upregulated. In low-, medium-, and high-dose BBR groups, the number of apoptotic IECs was significantly reduced. Moreover, GRP78 and caspase-3 expression levels were significantly decreased in the medium- and high-dose BBR groups, caspase-12 expression was significantly decreased in the high-dose BBR group, and the GRP78 mRNA expression level was significantly decreased in the high-dose BBR group. BBR can effectively reduce the rate of IEC apoptosis in UC mice and alleviate the inflammatory response in the colon. The underlying mechanism seems to involve ERS modulation and inhibition of ERS-mediated activation of the caspase-12/caspase-3 apoptosis signaling pathway.


AGE ◽  
2009 ◽  
Vol 32 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Chang-Qing Zhao ◽  
Yue-Hui Zhang ◽  
Sheng-Dan Jiang ◽  
Lei-Sheng Jiang ◽  
Li-Yang Dai

Author(s):  
Aldemar Andres Hegewald ◽  
Jessie Cluzel ◽  
Jan Philipp Krüger ◽  
Michaela Endres ◽  
Christian Kaps ◽  
...  

2013 ◽  
Vol 18 (10) ◽  
pp. 101308
Author(s):  
Hye-Yeong Kim ◽  
Michael Mcclincy ◽  
Nam V. Vo ◽  
Gwendolyn A. Sowa ◽  
James D. Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document